Silk genes and silk gene expression in the spider Tengella perfuga (Zoropsidae), including a potential cribellar spidroin (CrSp).

Sandra M Correa-Garhwal, R Crystal Chaw, Thomas H Clarke, Liliana G Alaniz, Fanny S Chan, Rachael E Alfaro, Cheryl Y Hayashi
Author Information
  1. Sandra M Correa-Garhwal: Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, United States of America. ORCID
  2. R Crystal Chaw: Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, United States of America.
  3. Thomas H Clarke: Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, United States of America.
  4. Liliana G Alaniz: Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, United States of America.
  5. Fanny S Chan: Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, United States of America.
  6. Rachael E Alfaro: Division of Arthropods, Museum of Southwestern Biology, Albuquerque, New Mexico, United States of America.
  7. Cheryl Y Hayashi: Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, United States of America.

Abstract

Most spiders spin multiple types of silk, including silks for reproduction, prey capture, and draglines. Spiders are a megadiverse group and the majority of spider silks remain uncharacterized. For example, nothing is known about the silk molecules of Tengella perfuga, a spider that spins sheet webs lined with cribellar silk. Cribellar silk is a type of adhesive capture thread composed of numerous fibrils that originate from a specialized plate-like spinning organ called the cribellum. The predominant components of spider silks are spidroins, members of a protein family synthesized in silk glands. Here, we use silk gland RNA-Seq and cDNA libraries to infer T. perfuga silks at the protein level. We show that T. perfuga spiders express 13 silk transcripts representing at least five categories of spider silk proteins (spidroins). One category is a candidate for cribellar silk and is thus named cribellar spidroin (CrSp). Studies of ontogenetic changes in web construction and spigot morphology in T. perfuga have documented that after sexual maturation, T. perfuga females continue to make capture webs but males halt web maintenance and cease spinning cribellar silk. Consistent with these observations, our candidate CrSp was expressed only in females. The other four spidroin categories correspond to paralogs of aciniform, ampullate, pyriform, and tubuliform spidroins. These spidroins are associated with egg sac and web construction. Except for the tubuliform spidroin, the spidroins from T. perfuga contain novel combinations of amino acid sequence motifs that have not been observed before in these spidroin types. Characterization of T. perfuga silk genes, particularly CrSp, expand the diversity of the spidroin family and inspire new structure/function hypotheses.

References

  1. Biomacromolecules. 2004 May-Jun;5(3):689-95 [PMID: 15132648]
  2. Insect Biochem Mol Biol. 2017 Feb;81:80-90 [PMID: 28057598]
  3. Curr Biol. 2018 May 7;28(9):1489-1497.e5 [PMID: 29706520]
  4. BMC Evol Biol. 2014 Feb 20;14:31 [PMID: 24552485]
  5. Protein Sci. 1998 Mar;7(3):667-72 [PMID: 9541398]
  6. Bioinformatics. 2012 Jun 15;28(12):1647-9 [PMID: 22543367]
  7. J Mol Biol. 1998 Feb 6;275(5):773-84 [PMID: 9480768]
  8. J Biol Chem. 1992 Sep 25;267(27):19320-4 [PMID: 1527052]
  9. Nat Mater. 2005 Oct;4(10):772-5 [PMID: 16184170]
  10. Genome Biol Evol. 2015 Jun 08;7(7):1856-70 [PMID: 26058392]
  11. Genome Biol. 2013 Apr 25;14(4):R36 [PMID: 23618408]
  12. Nat Commun. 2014 May 06;5:3765 [PMID: 24801114]
  13. Int J Biol Macromol. 1999 Mar-Apr;24(2-3):271-5 [PMID: 10342774]
  14. Proc Natl Acad Sci U S A. 2005 Aug 9;102(32):11379-84 [PMID: 16061817]
  15. Mol Biol Evol. 2008 Feb;25(2):277-86 [PMID: 18048404]
  16. J Exp Biol. 2006 Aug;209(Pt 16):3131-40 [PMID: 16888061]
  17. PLoS One. 2012;7(12):e52293 [PMID: 23251707]
  18. Science. 2001 Mar 30;291(5513):2603-5 [PMID: 11283372]
  19. Mol Biol Evol. 2004 Oct;21(10):1950-9 [PMID: 15240839]
  20. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  21. Tissue Cell. 1982;14(3):519-30 [PMID: 6890724]
  22. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  23. Biomacromolecules. 2010 Nov 8;11(11):3000-6 [PMID: 20954740]
  24. PLoS One. 2007 Jun 13;2(6):e514 [PMID: 17565367]
  25. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  26. J Morphol. 1994 Jul;221(1):111-119 [PMID: 29865401]
  27. Mol Biol Evol. 2007 Nov;24(11):2454-64 [PMID: 17728281]
  28. Evolution. 2006 Dec;60(12):2539-51 [PMID: 17263115]
  29. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  30. BMC Evol Biol. 2010 Aug 09;10:243 [PMID: 20696068]
  31. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  32. J Exp Biol. 2003 Nov;206(Pt 22):3905-11 [PMID: 14555732]
  33. Tissue Cell. 1980;12(3):547-56 [PMID: 7434338]
  34. Mol Biol Evol. 2017 Dec 6;:null [PMID: 29220515]
  35. Biomacromolecules. 2013 Oct 14;14(10):3472-83 [PMID: 24024617]
  36. Comp Biochem Physiol B Biochem Mol Biol. 2013 Mar;164(3):151-8 [PMID: 23262065]
  37. J Biol Chem. 2007 Nov 30;282(48):35088-97 [PMID: 17921147]
  38. Zootaxa. 2013;3709:185-99 [PMID: 26240905]
  39. PLoS One. 2012;7(6):e38084 [PMID: 22761664]
  40. Science. 1996 Apr 5;272(5258):112-5 [PMID: 8600519]
  41. Proc Biol Sci. 2017 May 31;284(1855): [PMID: 28566485]
  42. PeerJ. 2018 Jan 15;6:e4233 [PMID: 29362692]
  43. Biochemistry. 2005 Jun 7;44(22):8006-12 [PMID: 15924419]
  44. BMC Evol Biol. 2017 Mar 14;17(1):78 [PMID: 28288560]
  45. Sci Rep. 2016 Feb 15;6:21589 [PMID: 26875681]
  46. Int J Biol Macromol. 2018 Jul 1;113:829-840 [PMID: 29454054]
  47. BMC Genomics. 2014 May 23;15:365 [PMID: 24916340]
  48. Science. 1996 Jan 5;271(5245):84-7 [PMID: 8539605]
  49. Bioessays. 2001 Aug;23(8):750-6 [PMID: 11494324]
  50. Mol Biol Evol. 2013 Mar;30(3):589-601 [PMID: 23155003]
  51. Biomacromolecules. 2014 Dec 8;15(12):4598-605 [PMID: 25340514]
  52. Biomacromolecules. 2010 Dec 13;11(12):3495-503 [PMID: 21053953]
  53. Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5229-34 [PMID: 19289848]
  54. J Biol Chem. 2009 Oct 16;284(42):29097-108 [PMID: 19666476]
  55. Zoology (Jena). 2017 Jun;122:107-114 [PMID: 28536006]
  56. Evolution. 1998 Apr;52(2):403-414 [PMID: 28568335]
  57. Nat Genet. 2017 Jun;49(6):895-903 [PMID: 28459453]

MeSH Term

Animals
Female
Fibroins
Gene Expression
Male
Phylogeny
Sexual Maturation
Silk
Spiders

Chemicals

Silk
Fibroins

Word Cloud

Created with Highcharts 10.0.0silkperfugaTspidroinspidercribellarspidroinssilksCrSpcapturewebspiderstypesincludingTengellawebsspinningproteinfamilycategoriescandidateconstructionfemalestubuliformgenesspinmultiplereproductionpreydraglinesSpidersmegadiversegroupmajorityremainuncharacterizedexamplenothingknownmoleculesspinssheetlinedCribellartypeadhesivethreadcomposednumerousfibrilsoriginatespecializedplate-likeorgancalledcribellumpredominantcomponentsmemberssynthesizedglandsuseglandRNA-SeqcDNAlibrariesinferlevelshowexpress13transcriptsrepresentingleastfiveproteinsOnecategorythusnamedStudiesontogeneticchangesspigotmorphologydocumentedsexualmaturationcontinuemakemaleshaltmaintenanceceaseConsistentobservationsexpressedfourcorrespondparalogsaciniformampullatepyriformassociatedeggsacExceptcontainnovelcombinationsaminoacidsequencemotifsobservedCharacterizationparticularlyexpanddiversityinspirenewstructure/functionhypothesesSilkgeneexpressionZoropsidaepotential

Similar Articles

Cited By