Platelet-Rich Plasma Prevents In Vitro Transforming Growth Factor-β1-Induced Fibroblast to Myofibroblast Transition: Involvement of Vascular Endothelial Growth Factor (VEGF)-A/VEGF Receptor-1-Mediated Signaling .

Flaminia Chellini, Alessia Tani, Larissa Vallone, Daniele Nosi, Paola Pavan, Franco Bambi, Sandra Zecchi Orlandini, Chiara Sassoli
Author Information
  1. Flaminia Chellini: Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy. flaminia.chellini@unifi.it.
  2. Alessia Tani: Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy. alessia.tani@unifi.it.
  3. Larissa Vallone: Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy. larissa.vallone@unifi.it.
  4. Daniele Nosi: Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy. daniele.nosi@unifi.it.
  5. Paola Pavan: Transfusion Medicine and Cell Therapy Unit, "A. Meyer" University Children's Hospital, 50139 Florence, Italy. paola.pavan@meyer.it.
  6. Franco Bambi: Transfusion Medicine and Cell Therapy Unit, "A. Meyer" University Children's Hospital, 50139 Florence, Italy. franco.bambi@meyer.it. ORCID
  7. Sandra Zecchi Orlandini: Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy. sandra.zecchi@unifi.it.
  8. Chiara Sassoli: Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, 50134 Florence, Italy. chiara.sassoli@unifi.it. ORCID

Abstract

The antifibrotic potential of platelet-rich plasma (PRP) is controversial. This study examined the effects of PRP on in vitro transforming growth factor (TGF)-β1-induced differentiation of fibroblasts into myofibroblasts, the main drivers of fibrosis, and the involvement of vascular endothelial growth factor (VEGF)-A in mediating PRP-induced responses. The impact of PRP alone on fibroblast differentiation was also assessed. Myofibroblastic phenotype was evaluated by confocal fluorescence microscopy and western blotting analyses of α-smooth muscle actin (sma) and type-1 collagen expression, vinculin-rich focal adhesion clustering, and stress fiber assembly. Notch-1, connexin 43, and VEGF-A expression were also analyzed by RT-PCR. PRP negatively regulated fibroblast-myofibroblast transition via VEGF-A/VEGF receptor (VEGFR)-1-mediated inhibition of TGF-β1/Smad3 signaling. Indeed TGF-β1/PRP co-treated fibroblasts showed a robust attenuation of the myofibroblastic phenotype concomitant with a decrease of Smad3 expression levels. The VEGFR-1 inhibition by KRN633 or blocking antibodies, or VEGF-A neutralization in these cells prevented the PRP-promoted effects. Moreover PRP abrogated the TGF-β1-induced reduction of VEGF-A and VEGFR-1 cell expression. The role of VEGF-A signaling in counteracting myofibroblast generation was confirmed by cell treatment with soluble VEGF-A. PRP as single treatment did not induce fibroblast myodifferentiation. This study provides new insights into cellular and molecular mechanisms underpinning PRP antifibrotic action.

Keywords

References

  1. Am J Respir Cell Mol Biol. 2009 Oct;41(4):484-93 [PMID: 19188658]
  2. J Korean Med Sci. 2017 Jan;32(1):13-21 [PMID: 27914126]
  3. Tissue Eng Part B Rev. 2018 Jun 20;:null [PMID: 29737237]
  4. J Control Release. 2015 Mar 28;202:31-9 [PMID: 25626084]
  5. Front Pharmacol. 2017 Apr 06;8:186 [PMID: 28428753]
  6. J Periodontol. 2012 Aug;83(8):1028-37 [PMID: 22145805]
  7. Neurourol Urodyn. 2018 Apr;37(4):1286-1293 [PMID: 29226987]
  8. Exp Eye Res. 2017 Dec;165:136-150 [PMID: 28965804]
  9. JCI Insight. 2017 Aug 17;2(16):null [PMID: 28814671]
  10. Medicine (Baltimore). 2018 Apr;97(17):e0242 [PMID: 29702971]
  11. Muscles Ligaments Tendons J. 2016 Feb 13;5(4):284-8 [PMID: 26958537]
  12. Transfus Apher Sci. 2017 Aug;56(4):595-604 [PMID: 28844373]
  13. BMC Fam Pract. 2014 Dec 30;15:211 [PMID: 25547983]
  14. Methods Mol Biol. 2018;1773:107-122 [PMID: 29687384]
  15. Injury. 2015 Feb;46(2):428 [PMID: 25560090]
  16. Bioact Mater. 2017 Jun 07;2(4):224-247 [PMID: 29744432]
  17. Matrix Biol. 2018 Oct;71-72:205-224 [PMID: 29499355]
  18. Adv Wound Care (New Rochelle). 2013 May;2(4):122-141 [PMID: 24527336]
  19. Matrix Biol. 2018 Aug;68-69:8-27 [PMID: 29355590]
  20. Hepatology. 2011 May;53(5):1629-40 [PMID: 21520176]
  21. J Biol Regul Homeost Agents. 2012 Apr-Jun;26(2 Suppl 1):3S-22S [PMID: 23648195]
  22. Int J Oncol. 2008 Mar;32(3):585-92 [PMID: 18292935]
  23. J Orthop Res. 2011 Mar;29(3):457-63 [PMID: 20922797]
  24. Int J Cardiol. 2013 Sep 10;167(6):2638-45 [PMID: 22818386]
  25. J Craniomaxillofac Surg. 2014 Jul;42(5):e70-9 [PMID: 23932544]
  26. PLoS One. 2012;7(7):e37512 [PMID: 22815682]
  27. J Hum Reprod Sci. 2017 Jul-Sep;10(3):208-212 [PMID: 29142450]
  28. J Mol Cell Cardiol. 2007 Sep;43(3):292-300 [PMID: 17651752]
  29. Platelets. 2013;24(3):173-82 [PMID: 22647081]
  30. Cytokine Growth Factor Rev. 2017 Dec;38:49-58 [PMID: 28967471]
  31. J Dermatolog Treat. 2016;27(3):285-9 [PMID: 26466811]
  32. Gastroenterol Res Pract. 2013;2013:926764 [PMID: 24382956]
  33. Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4329-34 [PMID: 20142499]
  34. Tissue Eng Part C Methods. 2009 Dec;15(4):625-34 [PMID: 19231923]
  35. Exp Cell Res. 2010 Nov 1;316(18):3050-8 [PMID: 20570674]
  36. J Clin Invest. 2018 Jan 2;128(1):97-107 [PMID: 29293097]
  37. Einstein (Sao Paulo). 2016 Jul-Sep;14(3):391-397 [PMID: 27759829]
  38. Curr Pharm Biotechnol. 2016;17(5):402-13 [PMID: 26813305]
  39. Mol Cell Biol. 2012 May;32(10):1955-66 [PMID: 22431518]
  40. J Mol Cell Cardiol. 2003 Mar;35(3):277-86 [PMID: 12676542]
  41. J Tissue Viability. 2011 Nov;20(4):108-20 [PMID: 19995679]
  42. Joints. 2016 Jun 13;4(1):17-23 [PMID: 27386443]
  43. Int J Mol Sci. 2018 Apr 24;19(5):null [PMID: 29695053]
  44. Adv Skin Wound Care. 2014 Mar;27(3):114-20 [PMID: 24531517]
  45. J Biol Regul Homeost Agents. 2016 Oct-Dec;30(4 Suppl 1):63-67 [PMID: 28002901]
  46. Yonsei Med J. 2017 Nov;58(6):1195-1203 [PMID: 29047244]
  47. Oncotarget. 2015 Sep 8;6(26):22480-95 [PMID: 26090865]
  48. Can J Physiol Pharmacol. 2018 Jun;96(6):630-636 [PMID: 29444417]
  49. Matrix Biol. 2018 Aug;68-69:333-354 [PMID: 29654884]
  50. Br J Sports Med. 2015 Sep;49(18):1206-12 [PMID: 25940636]
  51. Cell Signal. 2007 Apr;19(4):761-71 [PMID: 17113264]
  52. Trends Biotechnol. 2017 Feb;35(2):91-93 [PMID: 27908451]
  53. Am J Sports Med. 2014 Sep;42(9):2067-74 [PMID: 25056987]
  54. Matrix Biol. 2018 Aug;68-69:81-93 [PMID: 29408013]
  55. Am J Sports Med. 2018 Jan 1;:363546517746112 [PMID: 29337592]
  56. Am J Respir Cell Mol Biol. 2014 Jul;51(1):34-42 [PMID: 24450584]
  57. Lasers Surg Med. 2016 Mar;48(3):318-32 [PMID: 26660509]
  58. Biomaterials. 2016 May;87:147-156 [PMID: 26923362]
  59. Curr Res Transl Med. 2016 Oct - Dec;64(4):171-177 [PMID: 27939455]
  60. Cell Tissue Res. 2018 Jun;372(3):549-570 [PMID: 29404727]
  61. Cytokine. 2017 Aug;96:94-101 [PMID: 28390267]
  62. Ann Plast Surg. 2013 Aug;71(2):219-24 [PMID: 23038148]
  63. Int J Mol Med. 2013 Jun;31(6):1436-42 [PMID: 23588932]
  64. Sci Rep. 2018 Jan 24;8(1):1513 [PMID: 29367608]
  65. Cytokine Growth Factor Rev. 2005 Apr;16(2):159-78 [PMID: 15863032]
  66. Platelets. 2018 Sep;29(6):556-568 [PMID: 29442539]
  67. PLoS One. 2013 May 21;8(5):e63896 [PMID: 23704950]
  68. J Blood Transfus. 2015;2015:706903 [PMID: 26301115]
  69. Aesthet Surg J. 2018 Mar 30;:null [PMID: 29617719]
  70. Transfus Apher Sci. 2015 Jun;52(3):300-4 [PMID: 25728718]
  71. PLoS One. 2013 Jun 28;8(6):e67303 [PMID: 23840657]
  72. Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17260-5 [PMID: 17088559]
  73. Braz Dent J. 2016 May-Jun;27(3):243-54 [PMID: 27224555]
  74. PLoS One. 2014 Feb 28;9(2):e90538 [PMID: 24587389]
  75. Am J Physiol Cell Physiol. 2013 Feb 1;304(3):C216-25 [PMID: 23255577]
  76. Cytotherapy. 2015 Mar;17(3):293-300 [PMID: 25456581]
  77. Arthroscopy. 2010 Apr;26(4):470-80 [PMID: 20362825]
  78. Clin Oral Implants Res. 2012 Sep;23(9):1104-11 [PMID: 22092788]
  79. Int J Mol Sci. 2018 Apr 26;19(5):null [PMID: 29701666]
  80. Expert Opin Biol Ther. 2018 Apr;18(4):389-398 [PMID: 29300106]
  81. J Control Release. 2012 Feb 10;157(3):317-20 [PMID: 22116022]
  82. Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3287-92 [PMID: 19966309]
  83. J Oral Maxillofac Pathol. 2017 Sep-Dec;21(3):462-463 [PMID: 29391737]
  84. Sci Rep. 2017 Jun 7;7(1):2954 [PMID: 28592806]
  85. World J Clin Cases. 2017 May 16;5(5):159-171 [PMID: 28560233]
  86. PM R. 2011 Mar;3(3):226-50 [PMID: 21402369]
  87. Am J Sports Med. 2018 Mar;46(4):977-986 [PMID: 29373806]
  88. Int J Med Sci. 2014 Aug 01;11(10):1029-38 [PMID: 25136258]
  89. J Cell Physiol. 2010 Nov;225(3):757-66 [PMID: 20568106]
  90. Stem Cell Res Ther. 2013 Jun 07;4(3):67 [PMID: 23759113]
  91. J Biol Regul Homeost Agents. 2015 Oct-Dec;29(4 Suppl):47-55 [PMID: 26652490]
  92. Am J Respir Cell Mol Biol. 2017 Jul;57(1):100-110 [PMID: 28245135]
  93. J Cosmet Dermatol. 2018 Jun;17(3):423-430 [PMID: 28887865]
  94. Exp Cell Res. 2009 Apr 15;315(7):1190-9 [PMID: 19162006]
  95. J Cosmet Laser Ther. 2014 Oct;16(5):206-8 [PMID: 25065381]
  96. Biomaterials. 2015 Mar;45:27-35 [PMID: 25662492]
  97. Wound Repair Regen. 2015 Jan-Feb;23(1):115-23 [PMID: 25571903]
  98. Acta Pharmacol Sin. 2011 Dec;32(12):1513-21 [PMID: 21986574]
  99. Arch Oral Biol. 2017 Dec;84:37-44 [PMID: 28941713]
  100. Sci Adv. 2018 Jan 17;4(1):eaao4881 [PMID: 29349300]
  101. Ann Rheum Dis. 2011 Nov;70(11):2011-21 [PMID: 21821866]
  102. Front Immunol. 2017 Jul 11;8:801 [PMID: 28744285]
  103. PLoS One. 2013 Jun 07;8(6):e64923 [PMID: 23762264]
  104. Basic Clin Pharmacol Toxicol. 2016 Nov;119(5):498-504 [PMID: 27154788]
  105. Exp Eye Res. 2015 Jun;135:118-26 [PMID: 25708868]
  106. J Funct Biomater. 2018 Jan 18;9(1):null [PMID: 29346333]

Grants

  1. ex60% DN, SZO, CS/Ministero dell'Istruzione, dell'Università e della Ricerca

Word Cloud

Created with Highcharts 10.0.0PRPVEGF-AgrowthfactorexpressionVEGFantifibroticplatelet-richplasmastudyeffectstransformingTGFdifferentiationfibroblastsmyofibroblastsfibrosisvascularendothelial-Afibroblastalsophenotypeconfocalα-smoothmuscleactinNotch-143inhibitionsignalingVEGFR-1celltreatmentGrowthpotentialcontroversialexaminedvitro-β1-inducedmaindriversinvolvementmediatingPRP-inducedresponsesimpactaloneassessedMyofibroblasticevaluatedfluorescencemicroscopywesternblottinganalysessmatype-1collagenvinculin-richfocaladhesionclusteringstressfiberassemblyconnexinanalyzedRT-PCRnegativelyregulatedfibroblast-myofibroblasttransitionviaVEGF-A/VEGFreceptorVEGFR-1-mediatedTGF-β1/Smad3IndeedTGF-β1/PRPco-treatedshowedrobustattenuationmyofibroblasticconcomitantdecreaseSmad3levelsKRN633blockingantibodiesneutralizationcellspreventedPRP-promotedMoreoverabrogatedTGF-β1-inducedreductionrolecounteractingmyofibroblastgenerationconfirmedsolublesingleinducemyodifferentiationprovidesnewinsightscellularmolecularmechanismsunderpinningactionPlatelet-RichPlasmaPreventsVitroTransformingFactor-β1-InducedFibroblastMyofibroblastTransition:InvolvementVascularEndothelialFactor-A/VEGFReceptor-1-MediatedSignalingConnexinVEGFR-1/flt-1immunofluorescence-β1/Smad3

Similar Articles

Cited By