Calculation of Average Mutual Information (AMI) and False-Nearest Neighbors (FNN) for the Estimation of Embedding Parameters of Multidimensional Time Series in Matlab.

Sebastian Wallot, Dan Mønster
Author Information
  1. Sebastian Wallot: Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany.
  2. Dan Mønster: Interacting Minds Centre, School of Culture and Society, Aarhus University, Aarhus, Denmark.

Abstract

Using the method or time-delayed embedding, a signal can be embedded into higher-dimensional space in order to study its dynamics. This requires knowledge of two parameters: The delay parameter τ, and the embedding dimension parameter . Two standard methods to estimate these parameters in one-dimensional time series involve the inspection of the Average Mutual Information (AMI) function and the False Nearest Neighbor (FNN) function. In some contexts, however, such as phase-space reconstruction for Multidimensional Recurrence Quantification Analysis (MdRQA), the empirical time series that need to be embedded already possess a dimensionality higher than one. In the current article, we present extensions of the AMI and FNN functions for higher dimensional time series and their application to data from the Lorenz system coded in Matlab.

Keywords

References

  1. Front Psychol. 2011 Nov 30;2:355 [PMID: 22164151]
  2. Cogn Sci. 2016 Jan;40(1):145-71 [PMID: 25988263]
  3. J Appl Physiol (1985). 1994 Feb;76(2):965-73 [PMID: 8175612]
  4. J Exp Psychol Hum Percept Perform. 2007 Feb;33(1):201-8 [PMID: 17311488]
  5. Cogn Sci. 2012 Nov-Dec;36(8):1404-26 [PMID: 22984793]
  6. Biol Psychol. 2010 Jul;84(3):394-421 [PMID: 20371374]
  7. Proc Natl Acad Sci U S A. 2011 May 17;108(20):8514-9 [PMID: 21536887]
  8. PLoS One. 2016 Dec 20;11(12):e0168306 [PMID: 27997558]
  9. Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jun;71(6 Pt 2):066208 [PMID: 16089850]
  10. Cogn Sci. 2005 Nov 12;29(6):1045-60 [PMID: 21702802]
  11. Phys Rev A. 1992 May 15;45(10):7073-7084 [PMID: 9906779]
  12. Science. 2012 Oct 26;338(6106):496-500 [PMID: 22997134]
  13. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Aug;74(2 Pt 2):026202 [PMID: 17025520]
  14. Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Aug;72(2 Pt 2):027205 [PMID: 16196759]
  15. Physiol Behav. 2016 Mar 15;156:24-34 [PMID: 26773466]
  16. J Exp Psychol Hum Percept Perform. 2003 Apr;29(2):326-332 [PMID: 12760618]
  17. Multivariate Behav Res. 2019 Mar-Apr;54(2):173-191 [PMID: 30569740]
  18. Top Cogn Sci. 2009 Apr;1(2):320-39 [PMID: 25164936]
  19. Phys Rev A Gen Phys. 1986 Feb;33(2):1134-1140 [PMID: 9896728]
  20. PLoS One. 2011;6(9):e24893 [PMID: 21957466]
  21. Phys Rev A. 1992 Mar 15;45(6):3403-3411 [PMID: 9907388]
  22. Front Psychol. 2016 Nov 22;7:1835 [PMID: 27920748]

Word Cloud

Created with Highcharts 10.0.0seriesMultidimensionalembeddingtimeAMIFNNtime-delayedembeddedparameterAverageMutualInformationfunctionRecurrenceQuantificationAnalysishigherMatlabTimeUsingmethodsignalcanhigher-dimensionalspaceorderstudydynamicsrequiresknowledgetwoparameters:delayτdimensionTwostandardmethodsestimateparametersone-dimensionalinvolveinspectionFalseNearestNeighborcontextshoweverphase-spacereconstructionMdRQAempiricalneedalreadypossessdimensionalityonecurrentarticlepresentextensionsfunctionsdimensionalapplicationdataLorenzsystemcodedCalculationFalse-NearestNeighborsEstimationEmbeddingParametersSeriesaveragemutualinformationcode:Matlabfalse-nearestneighbors

Similar Articles

Cited By