Comparison of fluctuations in global network topology of modeled and empirical brain functional connectivity.

Makoto Fukushima, Olaf Sporns
Author Information
  1. Makoto Fukushima: Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Osaka, Japan. ORCID
  2. Olaf Sporns: Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America. ORCID

Abstract

Dynamic models of large-scale brain activity have been used for reproducing many empirical findings on human brain functional connectivity. Features that have been shown to be reproducible by comparing modeled to empirical data include functional connectivity measured over several minutes of resting-state functional magnetic resonance imaging, as well as its time-resolved fluctuations on a time scale of tens of seconds. However, comparison of modeled and empirical data has not been conducted yet for fluctuations in global network topology of functional connectivity, such as fluctuations between segregated and integrated topology or between high and low modularity topology. Since these global network-level fluctuations have been shown to be related to human cognition and behavior, there is an emerging need for clarifying their reproducibility with computational models. To address this problem, we directly compared fluctuations in global network topology of functional connectivity between modeled and empirical data, and clarified the degree to which a stationary model of spontaneous brain dynamics can reproduce the empirically observed fluctuations. Modeled fluctuations were simulated using a system of coupled phase oscillators wired according to brain structural connectivity. By performing model parameter search, we found that modeled fluctuations in global metrics quantifying network integration and modularity had more than 80% of magnitudes of those observed in the empirical data. Temporal properties of network states determined based on fluctuations in these metrics were also found to be reproducible, although their spatial patterns in functional connectivity did not perfectly matched. These results suggest that stationary models simulating resting-state activity can reproduce the magnitude of empirical fluctuations in segregation and integration, whereas additional factors, such as active mechanisms controlling non-stationary dynamics and/or greater accuracy of mapping brain structural connectivity, would be necessary for fully reproducing the spatial patterning associated with these fluctuations.

References

  1. Neuroimage. 2017 Oct 15;160:84-96 [PMID: 28343985]
  2. Neuroimage. 2015 Jan 15;105:525-35 [PMID: 25462790]
  3. PLoS Comput Biol. 2016 Mar 16;12(3):e1004762 [PMID: 26982185]
  4. Neuroimage. 2015 Jan 1;104:430-6 [PMID: 25234118]
  5. Neuroimage Clin. 2018 Apr 20;19:240-251 [PMID: 30035018]
  6. Neuroimage. 2016 Feb 15;127:287-297 [PMID: 26687667]
  7. Chaos. 2012 Dec;22(4):043131 [PMID: 23278066]
  8. PLoS Comput Biol. 2015 Feb 18;11(2):e1004100 [PMID: 25692996]
  9. Neuroimage. 2017 Oct 15;160:41-54 [PMID: 28034766]
  10. Neuron. 2016 Oct 19;92(2):544-554 [PMID: 27693256]
  11. Annu Rev Neurosci. 2005;28:403-50 [PMID: 16022602]
  12. Nat Rev Neurosci. 2007 Jan;8(1):45-56 [PMID: 17180162]
  13. Neuroimage. 2013 Oct 15;80:62-79 [PMID: 23684880]
  14. Biol Psychiatry. 2016 Aug 15;80(4):293-301 [PMID: 26632269]
  15. Neuroimage. 2016 Feb 15;127:242-256 [PMID: 26631813]
  16. Front Physiol. 2012 Feb 08;3:15 [PMID: 22347863]
  17. Neuroimage. 2013 Oct 15;80:105-24 [PMID: 23668970]
  18. Neuroimage. 2011 Jun 15;56(4):2068-79 [PMID: 21459148]
  19. Hum Brain Mapp. 2017 Jun;38(6):3069-3080 [PMID: 28342260]
  20. J Neurosci Methods. 2012 Jan 30;203(2):386-97 [PMID: 22001222]
  21. Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):9653-8 [PMID: 27512040]
  22. Neuroimage. 2018 May 1;171:40-54 [PMID: 29294385]
  23. Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):16039-44 [PMID: 18843113]
  24. Neuroimage. 2015 Jul 1;114:466-70 [PMID: 25818688]
  25. Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10341-6 [PMID: 24982140]
  26. Neuroimage. 2003 Aug;19(4):1273-302 [PMID: 12948688]
  27. Prog Neurobiol. 2014 Mar;114:102-31 [PMID: 24389385]
  28. Magn Reson Med. 1998 Jun;39(6):855-64 [PMID: 9621908]
  29. Neuroimage. 2012 Feb 1;59(3):2142-54 [PMID: 22019881]
  30. Nature. 2005 Feb 24;433(7028):895-900 [PMID: 15729348]
  31. Elife. 2018 Jan 29;7:null [PMID: 29376825]
  32. Neuroimage. 2013 Oct 15;80:360-78 [PMID: 23707587]
  33. Brain Struct Funct. 2018 Apr;223(3):1091-1106 [PMID: 29090337]
  34. Nat Rev Neurosci. 2009 Mar;10(3):186-98 [PMID: 19190637]
  35. Elife. 2016 Sep 06;5: [PMID: 27596931]
  36. Neuron. 2015 Jun 17;86(6):1518-29 [PMID: 26087168]
  37. PLoS Comput Biol. 2014 Mar 20;10(3):e1003530 [PMID: 24651524]
  38. Neuroimage. 2012 Aug 15;62(2):743-7 [PMID: 21889996]
  39. J Neurosci. 2012 Mar 7;32(10):3366-75 [PMID: 22399758]
  40. Neuroimage. 2013 Jun;73:239-54 [PMID: 22846632]
  41. IEEE Trans Med Imaging. 2010 Sep;29(9):1626-35 [PMID: 20304721]
  42. Neuroimage. 2015 May 1;111:385-430 [PMID: 25592995]
  43. Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 2):026113 [PMID: 14995526]
  44. J Neurosci. 2015 Oct 14;35(41):13943-8 [PMID: 26468195]
  45. PLoS Biol. 2008 Jul 1;6(7):e159 [PMID: 18597554]
  46. Neuroimage. 2011 Jul 1;57(1):130-139 [PMID: 21511044]
  47. Neuroimage. 2014 Apr 15;90:423-35 [PMID: 24321555]
  48. Front Hum Neurosci. 2010 Nov 11;4:190 [PMID: 21151358]
  49. Front Hum Neurosci. 2014 Aug 21;8:647 [PMID: 25191259]
  50. Curr Biol. 2007 Aug 7;17(15):1275-85 [PMID: 17686438]
  51. Neuroimage. 2014 Jan 1;84:320-41 [PMID: 23994314]
  52. Neuroimage. 2017 Oct 1;159:388-402 [PMID: 28782678]
  53. Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8 [PMID: 15976020]
  54. Neuron. 2016 Jan 6;89(1):221-34 [PMID: 26711118]
  55. Hum Brain Mapp. 2008 Jul;29(7):751-61 [PMID: 18465799]
  56. Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16574-9 [PMID: 25368179]
  57. Neuroimage. 2017 Jul 15;155:490-502 [PMID: 28412440]
  58. PLoS Comput Biol. 2009 Jun;5(6):e1000408 [PMID: 19521503]
  59. Neuroimage. 2015 Sep;118:456-67 [PMID: 26049146]
  60. J Neurosci. 2013 Jul 3;33(27):11239-52 [PMID: 23825427]
  61. Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):2035-40 [PMID: 19188601]
  62. Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10238-43 [PMID: 20439733]
  63. Neuroimage. 2017 Oct 15;160:97-112 [PMID: 28126550]
  64. Sci Rep. 2017 Jun 8;7(1):3095 [PMID: 28596608]
  65. J Neurophysiol. 2011 Sep;106(3):1125-65 [PMID: 21653723]
  66. Magn Reson Med. 1996 Mar;35(3):346-55 [PMID: 8699946]
  67. Neuroimage. 2015 May 1;111:65-75 [PMID: 25682944]
  68. Neuroimage. 2010 Mar;50(1):81-98 [PMID: 20006716]
  69. Nat Neurosci. 2017 Feb 23;20(3):340-352 [PMID: 28230845]
  70. Nat Neurosci. 2017 Feb 23;20(3):353-364 [PMID: 28230844]
  71. Neuroimage. 2017 Feb 1;146:609-625 [PMID: 27751941]
  72. Cereb Cortex. 2017 Oct 1;27(10):4719-4732 [PMID: 27591147]
  73. Ann N Y Acad Sci. 2011 Apr;1224:109-125 [PMID: 21251014]
  74. PLoS Comput Biol. 2008 Oct;4(10):e1000196 [PMID: 18846206]
  75. Chaos. 2010 Mar;20(1):013108 [PMID: 20370263]
  76. Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10240-5 [PMID: 17548818]
  77. Neuroimage. 2018 Oct 15;180(Pt B):406-416 [PMID: 28823827]
  78. Cereb Cortex. 2014 Mar;24(3):663-76 [PMID: 23146964]

Grants

  1. R01 AT009036/NCCIH NIH HHS

MeSH Term

Adult
Brain
Brain Mapping
Cerebral Cortex
Cognition
Computer Simulation
Databases, Factual
Female
Humans
Magnetic Resonance Imaging
Male
Models, Neurological
Models, Statistical
Nerve Net
Neural Pathways
Normal Distribution
Pattern Recognition, Automated
Reproducibility of Results
Time Factors
Young Adult

Word Cloud

Created with Highcharts 10.0.0fluctuationsconnectivityempiricalfunctionalbrainmodeledglobalnetworktopologydatamodelsactivityreproducinghumanshownreproducibleresting-statemodularitystationarymodeldynamicscanreproduceobservedstructuralfoundmetricsintegrationspatialDynamiclarge-scaleusedmanyfindingsFeaturescomparingincludemeasuredseveralminutesmagneticresonanceimagingwelltime-resolvedtimescaletenssecondsHowevercomparisonconductedyetsegregatedintegratedhighlowSincenetwork-levelrelatedcognitionbehavioremergingneedclarifyingreproducibilitycomputationaladdressproblemdirectlycomparedclarifieddegreespontaneousempiricallyModeledsimulatedusingsystemcoupledphaseoscillatorswiredaccordingperformingparametersearchquantifying80%magnitudesTemporalpropertiesstatesdeterminedbasedalsoalthoughpatternsperfectlymatchedresultssuggestsimulatingmagnitudesegregationwhereasadditionalfactorsactivemechanismscontrollingnon-stationaryand/orgreateraccuracymappingnecessaryfullypatterningassociatedComparison

Similar Articles

Cited By