A germanium hole spin qubit.

Hannes Watzinger, Josip Kukučka, Lada Vukušić, Fei Gao, Ting Wang, Friedrich Schäffler, Jian-Jun Zhang, Georgios Katsaros
Author Information
  1. Hannes Watzinger: Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria. hannes.watzinger@ist.ac.at.
  2. Josip Kukučka: Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria. josip.kukucka@ist.ac.at.
  3. Lada Vukušić: Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria.
  4. Fei Gao: National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China. ORCID
  5. Ting Wang: National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
  6. Friedrich Schäffler: Johannes Kepler University, Institute of Semiconductor and Solid State Physics, Altenbergerstr, 69, 4040, Linz, Austria.
  7. Jian-Jun Zhang: National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
  8. Georgios Katsaros: Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria.

Abstract

Holes confined in quantum dots have gained considerable interest in the past few years due to their potential as spin qubits. Here we demonstrate two-axis control of a spin 3/2 qubit in natural Ge. The qubit is formed in a hut wire double quantum dot device. The Pauli spin blockade principle allowed us to demonstrate electric dipole spin resonance by applying a radio frequency electric field to one of the electrodes defining the double quantum dot. Coherent hole spin oscillations with Rabi frequencies reaching 140 MHz are demonstrated and dephasing times of 130 ns are measured. The reported results emphasize the potential of Ge as a platform for fast and electrically tunable hole spin qubit devices.

References

  1. Sci Adv. 2016 Aug 12;2(8):e1600694 [PMID: 27536725]
  2. Nano Lett. 2014 Jun 11;14(6):3582-6 [PMID: 24797219]
  3. Nat Nanotechnol. 2014 Sep;9(9):666-70 [PMID: 25108810]
  4. Nano Lett. 2016 Nov 9;16(11):6879-6885 [PMID: 27656760]
  5. Nat Nanotechnol. 2014 Dec;9(12):986-91 [PMID: 25305745]
  6. Nano Lett. 2018 Nov 14;18(11):7141-7145 [PMID: 30359041]
  7. Nat Nanotechnol. 2011 Dec 18;7(1):47-50 [PMID: 22179569]
  8. Phys Rev Lett. 2008 Aug 29;101(9):096103 [PMID: 18851626]
  9. Nat Nanotechnol. 2018 Feb;13(2):102-106 [PMID: 29255292]
  10. Nature. 2018 Mar 29;555(7698):599-603 [PMID: 29443961]
  11. Nat Nanotechnol. 2010 Jun;5(6):458-64 [PMID: 20436467]
  12. Science. 2018 Mar 9;359(6380):1123-1127 [PMID: 29371427]
  13. Nano Lett. 2017 Sep 13;17(9):5706-5710 [PMID: 28795821]
  14. Nat Mater. 2016 Sep;15(9):981-6 [PMID: 27454044]
  15. Phys Rev Lett. 2013 Feb 8;110(6):066806 [PMID: 23432291]
  16. Science. 2015 Jul 24;349(6246):408-11 [PMID: 26206930]
  17. Nat Commun. 2016 Nov 24;7:13575 [PMID: 27882926]
  18. Nano Lett. 2010 Aug 11;10(8):2956-60 [PMID: 20698609]
  19. Science. 2002 Aug 23;297(5585):1313-7 [PMID: 12142438]
  20. Phys Rev Lett. 2012 Aug 24;109(8):085502 [PMID: 23002758]

Grants

  1. 335497/EC | European Research Council (ERC)
  2. Y 715-N30/Austrian Science Fund (FWF Der Wissenschaftsfonds)

Word Cloud

Created with Highcharts 10.0.0spinqubitquantumholepotentialdemonstrateGedoubledotelectricHolesconfineddotsgainedconsiderableinterestpastyearsduequbitstwo-axiscontrol3/2naturalformedhutwiredevicePauliblockadeprincipleallowedusdipoleresonanceapplyingradiofrequencyfieldoneelectrodesdefiningCoherentoscillationsRabifrequenciesreaching140 MHzdemonstrateddephasingtimes130 nsmeasuredreportedresultsemphasizeplatformfastelectricallytunabledevicesgermanium

Similar Articles

Cited By