Analysis of Fitness Trade-Offs in the Host Range Expansion of an RNA Virus, Tobacco Mild Green Mosaic Virus.

Sayanta Bera, Aurora Fraile, Fernando García-Arenal
Author Information
  1. Sayanta Bera: Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain.
  2. Aurora Fraile: Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain.
  3. Fernando García-Arenal: Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain fernando.garciaarenal@upm.es.

Abstract

The acquisition of new hosts provides a virus with more opportunities for transmission and survival but may be limited by across-host fitness trade-offs. Major causes of across-host trade-offs are antagonistic pleiotropy, that is, host differential phenotypic effects of mutations, a Genotype x Environment interaction, and epistasis, a Genotype x Genotype interaction. Here, we analyze if there are trade-offs, and what are the causes, associated with the acquisition by tobacco mild green mosaic virus (TMGMV) of a new host. For this, the multiplication of sympatric field isolates of TMGMV from its wild reservoir host and from pepper crops was quantified in the original and the heterologous hosts. TMGMV isolates from were adapted to their host, but pepper isolates were not adapted to pepper, and the acquisition of this new host was associated with a fitness penalty in the original host. Analyses of the collection of field isolates and of mutant genotypes derived from biologically active cDNA clones showed a role of mutations in the coat protein and the 3' untranslated region in determining within-host virus fitness. Fitness depended on host-specific effects of these mutations, on the genetic background in which they occurred, and on higher-order interactions of the type Genotype x Genotype x Environment. These types of effects had been reported to generate across-host fitness trade-offs under experimental evolution. Our results show they may also operate in heterogeneous natural environments and could explain why pepper isolates were not adapted to pepper and their lower fitness in The acquisition of new hosts conditions virus epidemiology and emergence; hence it is important to understand the mechanisms behind host range expansion. Experimental evolution studies have identified antagonistic pleiotropy and epistasis as genetic mechanisms that limit host range expansion, but studies from virus field populations are few. Here, we compare the performance of isolates of tobacco mild green mosaic virus from its reservoir host, and its new host, pepper, showing that acquisition of a new host was not followed by adaptation to it but was associated with a fitness loss in the original host. Analysis of mutations determining host-specific virus multiplication identified antagonistic pleiotropy, epistasis, and host-specific epistasis as mechanisms generating across-host fitness trade-offs that may prevent adaptation to pepper and cause a loss of fitness in Thus, mechanisms determining trade-offs, identified under experimental evolution, could also operate in the heterogeneous environment in which natural plant virus populations occur.

Keywords

References

  1. Virology. 2002 Aug 15;300(1):50-9 [PMID: 12202205]
  2. Mol Plant Microbe Interact. 2010 Jun;23(6):823-30 [PMID: 20459321]
  3. Trends Ecol Evol. 2005 May;20(5):238-44 [PMID: 16701375]
  4. Trends Microbiol. 2016 Apr;24(4):270-283 [PMID: 26850219]
  5. PLoS One. 2014 Mar 19;9(3):e92056 [PMID: 24647143]
  6. Mol Biol Evol. 2011 Apr;28(4):1425-37 [PMID: 21131559]
  7. Annu Rev Phytopathol. 2002;40:287-308 [PMID: 12147762]
  8. Biol Lett. 2013 Feb 23;9(1):20120396 [PMID: 22809724]
  9. Evolution. 1999 Apr;53(2):395-407 [PMID: 28565431]
  10. PLoS Pathog. 2012;8(10):e1002975 [PMID: 23093939]
  11. Phytopathology. 2005 Jul;95(7):827-33 [PMID: 18943016]
  12. Evolution. 2014 Sep;68(9):2467-80 [PMID: 24889935]
  13. Emerg Infect Dis. 2005 Dec;11(12):1842-7 [PMID: 16485468]
  14. Open Virol J. 2009 Mar 19;3:1-6 [PMID: 19572052]
  15. Heredity (Edinb). 2012 Aug;109(2):71-7 [PMID: 22491062]
  16. Evolution. 2007 Nov;61(11):2614-22 [PMID: 17908251]
  17. Mol Plant Pathol. 2010 Jan;11(1):145-54 [PMID: 20078783]
  18. Adv Virus Res. 2018;101:293-339 [PMID: 29908592]
  19. J Evol Biol. 2012 Nov;25(11):2242-52 [PMID: 22947055]
  20. PLoS Pathog. 2012 Jan;8(1):e1002482 [PMID: 22291591]
  21. J Virol. 2002 Dec;76(23):12320-4 [PMID: 12414972]
  22. PLoS Genet. 2011 Nov;7(11):e1002378 [PMID: 22125497]
  23. Mol Biol Evol. 2018 Jul 1;35(7):1599-1615 [PMID: 29562354]
  24. Mol Plant Microbe Interact. 2006 May;19(5):557-63 [PMID: 16673943]
  25. Virology. 1990 Aug;177(2):553-8 [PMID: 2371769]
  26. Phytopathology. 2004 Dec;94(12):1337-41 [PMID: 18943704]
  27. Proc Natl Acad Sci U S A. 2004 Oct 26;101(43):15376-9 [PMID: 15492220]
  28. J Virol. 2014 Mar;88(6):3359-68 [PMID: 24390328]
  29. Mol Biol Evol. 2011 Sep;28(9):2707-17 [PMID: 21498601]
  30. Adv Virus Res. 2014;88:161-91 [PMID: 24373312]
  31. Heredity (Edinb). 2017 Jan;118(1):96-109 [PMID: 27901509]
  32. Evolution. 1994 Oct;48(5):1423-1437 [PMID: 28568406]
  33. Philos Trans R Soc Lond B Biol Sci. 2013 Jan 19;368(1610):20120086 [PMID: 23209168]
  34. Virology. 1996 Sep 1;223(1):148-55 [PMID: 8806548]
  35. Mol Biol Evol. 2012 May;29(5):1481-92 [PMID: 22319146]
  36. Mol Plant Pathol. 2016 Sep;17(7):1154-9 [PMID: 26662495]
  37. Science. 2001 May 11;292(5519):1109-12 [PMID: 11352066]
  38. J Gen Virol. 2000 Mar;81(Pt 3):577-86 [PMID: 10675395]
  39. J Virol. 2016 Sep 29;90(20):9128-37 [PMID: 27489266]
  40. Philos Trans R Soc Lond B Biol Sci. 2015 Aug 19;370(1675):null [PMID: 26150658]
  41. J Virol. 1997 Nov;71(11):8316-20 [PMID: 9343184]
  42. Proc Biol Sci. 2002 Apr 7;269(1492):703-10 [PMID: 11934361]
  43. Curr Opin Virol. 2015 Feb;10:1-6 [PMID: 25467278]
  44. J Virol. 2017 Jul 5;: [PMID: 28679755]
  45. J Gen Virol. 2017 Apr;98(4):862-873 [PMID: 28475036]
  46. Emerg Infect Dis. 2002 Dec;8(12):1468-73 [PMID: 12498665]
  47. Proc Biol Sci. 2012 Dec 22;279(1749):4861-9 [PMID: 23097515]
  48. Mol Biol Evol. 2014 Apr;31(4):928-39 [PMID: 24441034]
  49. Virology. 1976 Jun;71(2):498-517 [PMID: 936472]

MeSH Term

3' Untranslated Regions
Capsicum
Capsid Proteins
Epistasis, Genetic
Genetic Fitness
Genotype
Host Specificity
Mutation
Phylogeny
Nicotiana
Tobamovirus

Chemicals

3' Untranslated Regions
Capsid Proteins

Word Cloud

Created with Highcharts 10.0.0hostfitnessvirustrade-offspeppernewisolatesacquisitionacross-hostGenotypeepistasispleiotropymutationsxmechanismshostsmayantagonisticeffectsassociatedTMGMVfieldoriginaladapteddetermininghost-specificevolutionidentifiedadaptationcausesEnvironmentinteractiontobaccomildgreenmosaicmultiplicationreservoirFitnessgeneticexperimentalalsooperateheterogeneousnaturalrangeexpansionstudiespopulationslossAnalysisVirusprovidesopportunitiestransmissionsurvivallimitedMajordifferentialphenotypicanalyzesympatricwildcropsquantifiedheterologouspenaltyAnalysescollectionmutantgenotypesderivedbiologicallyactivecDNAclonesshowedrolecoatprotein3'untranslatedregionwithin-hostdependedbackgroundoccurredhigher-orderinteractionstypetypesreportedgenerateresultsshowenvironmentsexplainlowerconditionsepidemiologyemergencehenceimportantunderstandbehindExperimentallimitcompareperformanceshowingfollowedgeneratingpreventcauseThusenvironmentplantoccurTrade-OffsHostRangeExpansionRNATobaccoMildGreenMosaicCapsicumNicotianaglaucatobamovirus

Similar Articles

Cited By