Principles of nucleosome organization revealed by single-cell micrococcal nuclease sequencing.

Binbin Lai, Weiwu Gao, Kairong Cui, Wanli Xie, Qingsong Tang, Wenfei Jin, Gangqing Hu, Bing Ni, Keji Zhao
Author Information
  1. Binbin Lai: Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA.
  2. Weiwu Gao: Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA.
  3. Kairong Cui: Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA.
  4. Wanli Xie: Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA.
  5. Qingsong Tang: Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA.
  6. Wenfei Jin: Department of Biology, South University of Science and Technology of China, Shenzhen, China.
  7. Gangqing Hu: Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA.
  8. Bing Ni: Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing, China.
  9. Keji Zhao: Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA. zhaok@nhlbi.nih.gov.

Abstract

Nucleosome positioning is critical to chromatin accessibility and is associated with gene expression programs in cells. Previous nucleosome mapping methods assemble profiles from cell populations and reveal a cell-averaged pattern: nucleosomes are positioned and form a phased array that surrounds the transcription start sites of active genes and DNase I hypersensitive sites. However, even in a homogenous population of cells, cells exhibit heterogeneity in expression in response to active signalling that may be related to heterogeneity in chromatin accessibility. Here we report a technique, termed single-cell micrococcal nuclease sequencing (scMNase-seq), that can be used to simultaneously measure genome-wide nucleosome positioning and chromatin accessibility in single cells. Application of scMNase-seq to NIH3T3 cells, mouse primary naive CD4 T cells and mouse embryonic stem cells reveals two principles of nucleosome organization: first, nucleosomes in heterochromatin regions, or that surround the transcription start sites of silent genes, show large variation in positioning across different cells but are highly uniformly spaced along the nucleosome array; and second, nucleosomes that surround the transcription start sites of active genes and DNase I hypersensitive sites show little variation in positioning across different cells but are relatively heterogeneously spaced along the nucleosome array. We found a bimodal distribution of nucleosome spacing at DNase I hypersensitive sites, which corresponds to inaccessible and accessible states and is associated with nucleosome variation and variation in accessibility across cells. Nucleosome variation is smaller within single cells than across cells, and smaller within the same cell type than across cell types. A large fraction of naive CD4 T cells and mouse embryonic stem cells shows depleted nucleosome occupancy at the de novo enhancers detected in their respective differentiated lineages, revealing the existence of cells primed for differentiation to specific lineages in undifferentiated cell populations.

References

  1. Cell. 2005 Dec 29;123(7):1199-212 [PMID: 16377562]
  2. Cell. 2015 May 21;161(5):1202-1214 [PMID: 26000488]
  3. Nat Struct Mol Biol. 2011 Apr;18(4):510-5 [PMID: 21399641]
  4. Nature. 2007 Mar 29;446(7135):572-6 [PMID: 17392789]
  5. Genome Res. 2008 Jul;18(7):1051-63 [PMID: 18477713]
  6. Nature. 2015 Jul 23;523(7561):486-90 [PMID: 26083756]
  7. Nat Genet. 2015 Dec;47(12):1393-401 [PMID: 26502339]
  8. Nat Biotechnol. 2015 Nov;33(11):1165-72 [PMID: 26458175]
  9. J Mol Biol. 2012 Jun 8;419(3-4):183-97 [PMID: 22446683]
  10. Cell. 2008 Mar 7;132(5):887-98 [PMID: 18329373]
  11. Science. 2011 May 20;332(6032):977-80 [PMID: 21596991]
  12. PLoS Genet. 2012;8(11):e1003036 [PMID: 23166509]
  13. Nat Methods. 2009 May;6(5):377-82 [PMID: 19349980]
  14. Mol Cell. 2012 Oct 12;48(1):5-15 [PMID: 22885008]
  15. Biochem Cell Biol. 2011 Feb;89(1):24-34 [PMID: 21326360]
  16. Nature. 2008 May 8;453(7192):246-50 [PMID: 18418379]
  17. Nature. 2014 Nov 20;515(7527):355-64 [PMID: 25409824]
  18. Science. 2015 May 22;348(6237):910-4 [PMID: 25953818]
  19. Nat Struct Mol Biol. 2012 Nov;19(11):1185-92 [PMID: 23085715]
  20. Genome Res. 2011 Oct;21(10):1650-8 [PMID: 21795385]
  21. Genome Biol. 2010;11(11):140 [PMID: 21118582]
  22. PLoS Biol. 2008 Mar 18;6(3):e65 [PMID: 18351804]
  23. Nature. 2011 May 22;474(7352):516-20 [PMID: 21602827]
  24. Nature. 2008 May 15;453(7193):358-62 [PMID: 18408708]
  25. Nature. 2015 Dec 3;528(7580):142-6 [PMID: 26605532]
  26. Nature. 2012 Jun 28;486(7404):496-501 [PMID: 22722846]
  27. Genome Res. 2008 Jul;18(7):1073-83 [PMID: 18550805]
  28. Cell. 2009 May 1;137(3):445-58 [PMID: 19410542]
  29. Cell. 1997 Jul 11;90(1):145-55 [PMID: 9230310]

Grants

  1. ZIA HL005801/Intramural NIH HHS
  2. /NHLBI NIH HHS

MeSH Term

3T3 Cells
Animals
CD4-Positive T-Lymphocytes
Cell Differentiation
Cell Lineage
Cells, Cultured
Deoxyribonuclease I
Enhancer Elements, Genetic
Euchromatin
Gene Silencing
Genome
Heterochromatin
Male
Mice
Micrococcal Nuclease
Mouse Embryonic Stem Cells
Nucleosomes
Organ Specificity
Single-Cell Analysis
Transcription Initiation Site

Chemicals

Euchromatin
Heterochromatin
Nucleosomes
Deoxyribonuclease I
Micrococcal Nuclease

Word Cloud

Created with Highcharts 10.0.0cellsnucleosomesitesvariationacrosspositioningaccessibilitycellchromatinnucleosomesarraytranscriptionstartactivegenesDNasehypersensitivemouseNucleosomeassociatedexpressionpopulationsheterogeneitysingle-cellmicrococcalnucleasesequencingscMNase-seqsinglenaiveCD4TembryonicstemsurroundshowlargedifferentspacedalongsmallerwithinlineagescriticalgeneprogramsPreviousmappingmethodsassembleprofilesrevealcell-averagedpattern:positionedformphasedsurroundsHoweverevenhomogenouspopulationexhibitresponsesignallingmayrelatedreporttechniquetermedcanusedsimultaneouslymeasuregenome-wideApplicationNIH3T3primaryrevealstwoprinciplesorganization:firstheterochromatinregionssilenthighlyuniformlysecondlittlerelativelyheterogeneouslyfoundbimodaldistributionspacingcorrespondsinaccessibleaccessiblestatestypetypesfractionshowsdepletedoccupancydenovoenhancersdetectedrespectivedifferentiatedrevealingexistenceprimeddifferentiationspecificundifferentiatedPrinciplesorganizationrevealed

Similar Articles

Cited By