Manipulation of the silkworm immune system by a metalloprotease from the pathogenic bacterium Pseudomonas aeruginosa.

Li Ma, Lizhen Zhou, Jinshui Lin, Jiuyuan Ji, Yang Wang, Haobo Jiang, Xihui Shen, Zhiqiang Lu
Author Information
  1. Li Ma: Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
  2. Lizhen Zhou: Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
  3. Jinshui Lin: Department of Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
  4. Jiuyuan Ji: Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
  5. Yang Wang: Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
  6. Haobo Jiang: Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA.
  7. Xihui Shen: Department of Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
  8. Zhiqiang Lu: Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address: zhiqiang.lu@nwsuaf.edu.cn.

Abstract

Antimicrobial peptide (AMP) production and melanization are two key humoral immune responses in insects. Induced synthesis of AMPs results from Toll and IMD signal transduction whereas melanization depends on prophenoloxidase (PPO) activation system. During invasion, pathogens produce toxins and other virulent factors to counteract host immune responses. Here we show that the pathways leading to PPO activation and AMP synthesis in the silkworm Bombyx mori are affected by a metalloprotease, named elastase B, secreted by Pseudomonas aeruginosa (PAO1). The metalloprotease gene (lasB) was expressed shortly after PAO1 cells had been injected into the larval silkworm hemocoel, leading to an increase of elastase activity. Injection of the purified PAO1 elastase B into silkworm hemolymph compromised PPO activation. In contrast, the protease caused a level increase of gloverin, an AMP in the hemolymph. To verify our results obtained using the purified elastase B, we infected B. mori with PAO1 ΔlasB mutant and found that PO activity in hemolymph of the PAO1 ΔlasB-infected larvae was significantly higher than that in the wild type-infected. The mutant-inhabited hemolymph had lower levels of gloverin and antimicrobial activity. PAO1 ΔlasB showed a decreased viability in the silkworm hemolymph whereas the host had a lower mortality. In addition, the effects caused by the ΔlasB mutant were restored by a complementary strain. These data collectively indicated that the elastase B produced by PAO1 is an important virulent factor that manipulates the silkworm immune system during infection.

Keywords

References

  1. Chem Biol Drug Des. 2009 Jan;73(1):7-16 [PMID: 19152630]
  2. J Bacteriol. 2008 Apr;190(8):2841-50 [PMID: 18263727]
  3. Mol Cell. 2018 Feb 15;69(4):539-550.e6 [PMID: 29452635]
  4. Insect Biochem Mol Biol. 2016 Jun;73:27-37 [PMID: 27084699]
  5. Curr Opin Insect Sci. 2015 Oct 1;11:47-55 [PMID: 26688791]
  6. Insect Biochem Mol Biol. 2000 Jun;30(6):461-72 [PMID: 10802237]
  7. Methods Mol Biol. 2014;1149:681-8 [PMID: 24818942]
  8. Dev Comp Immunol. 2018 Apr;81:116-126 [PMID: 29174605]
  9. Biochem Biophys Res Commun. 1992 Nov 16;188(3):1169-75 [PMID: 1445351]
  10. MBio. 2017 Feb 21;8(1): [PMID: 28223461]
  11. PLoS Pathog. 2006 Jun;2(6):e56 [PMID: 16789834]
  12. J Innate Immun. 2009;1(2):70-87 [PMID: 19756242]
  13. Infect Immun. 2011 Jan;79(1):211-9 [PMID: 21041488]
  14. Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2573-8 [PMID: 15695583]
  15. Infect Immun. 2010 Nov;78(11):4511-22 [PMID: 20805335]
  16. Mol Microbiol. 2014 Dec;94(6):1298-314 [PMID: 25315216]
  17. PLoS One. 2011 Mar 29;6(3):e18109 [PMID: 21479226]
  18. Cell Microbiol. 2008 Jul;10(7):1491-504 [PMID: 18331590]
  19. J Invertebr Pathol. 2011 May;107(1):16-26 [PMID: 21236262]
  20. Curr Biol. 2006 Apr 18;16(8):808-13 [PMID: 16631589]
  21. J Biol Chem. 2012 Oct 19;287(43):36582-92 [PMID: 22859304]
  22. Insect Biochem Mol Biol. 2008 Dec;38(12):1087-110 [PMID: 18835443]
  23. Front Cell Infect Microbiol. 2015 Oct 01;5:70 [PMID: 26484316]
  24. Appl Environ Microbiol. 2007 Mar;73(5):1569-75 [PMID: 17220257]
  25. J Invertebr Pathol. 2017 May;145:13-22 [PMID: 28302381]
  26. J Bacteriol. 1997 Sep;179(18):5756-67 [PMID: 9294432]
  27. J Invertebr Pathol. 2014 Mar;117:61-7 [PMID: 24530643]
  28. J Insect Physiol. 2014 Jan;60:40-9 [PMID: 24262307]
  29. Methods Mol Biol. 2014;1149:723-40 [PMID: 24818946]
  30. Insect Mol Biol. 2003 Feb;12(1):93-7 [PMID: 12542640]
  31. Comp Biochem Physiol B Biochem Mol Biol. 2009 Feb;152(2):118-23 [PMID: 18996217]
  32. Microbiology. 2012 Aug;158(Pt 8):2125-32 [PMID: 22628480]
  33. J Invertebr Pathol. 2014 Jan;115:14-25 [PMID: 24513029]
  34. Microb Pathog. 2002 Apr;32(4):183-90 [PMID: 12079408]
  35. Can J Microbiol. 1985 Apr;31(4):387-92 [PMID: 2988728]
  36. Infect Immun. 2003 May;71(5):2404-13 [PMID: 12704110]
  37. Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2419-24 [PMID: 17284598]
  38. PLoS One. 2013 Sep 19;8(9):e75708 [PMID: 24069438]
  39. J Biol Chem. 2009 Jul 17;284(29):19716-26 [PMID: 19487692]
  40. J Biol Chem. 2014 Feb 28;289(9):5876-88 [PMID: 24398686]
  41. Insect Biochem Mol Biol. 2003 Feb;33(2):197-208 [PMID: 12535678]
  42. Cell Microbiol. 2011 Aug;13(8):1149-67 [PMID: 21501369]
  43. Expert Rev Vaccines. 2018 Apr;17(4):335-349 [PMID: 29580106]
  44. Nat Commun. 2016 Dec 08;7:13823 [PMID: 27929111]
  45. Infect Immun. 2007 Jan;75(1):175-83 [PMID: 17074843]
  46. Microb Pathog. 2011 Dec;51(6):407-14 [PMID: 21945328]
  47. Eur J Biochem. 1998 Mar 15;252(3):339-46 [PMID: 9546647]
  48. Expert Rev Anti Infect Ther. 2003 Dec;1(4):667-83 [PMID: 15482163]
  49. Microbiology. 2011 May;157(Pt 5):1474-80 [PMID: 21330433]
  50. Exp Mol Med. 2017 Sep 1;49(9):e373 [PMID: 28860663]
  51. Nat Protoc. 2006;1(1):16-22 [PMID: 17406207]
  52. J Bacteriol. 2000 Jul;182(13):3843-5 [PMID: 10851003]
  53. J Innate Immun. 2016;8(2):199-210 [PMID: 26694862]
  54. Infect Immun. 2015 Oct 26;84(1):162-71 [PMID: 26502908]
  55. PLoS One. 2009 Dec 01;4(12):e8098 [PMID: 19956592]
  56. J Biol Chem. 2006 Sep 22;281(38):28097-104 [PMID: 16861233]
  57. Can J Microbiol. 2014 Apr;60(4):227-35 [PMID: 24693981]
  58. Insect Biochem Mol Biol. 2005 Mar;35(3):241-8 [PMID: 15705503]
  59. Sci Rep. 2016 Feb 03;6:18340 [PMID: 26838602]
  60. MBio. 2015 Mar 10;6(2):e00075 [PMID: 25759499]
  61. Appl Environ Microbiol. 2007 Dec;73(23):7622-8 [PMID: 17933944]
  62. Nat Rev Microbiol. 2008 Apr;6(4):302-13 [PMID: 18327270]
  63. Semin Cell Dev Biol. 2017 Feb;62:105-119 [PMID: 27603121]

Grants

  1. R01 GM058634/NIGMS NIH HHS
  2. R21 AI112662/NIAID NIH HHS
  3. R21 AI139998/NIAID NIH HHS

MeSH Term

Animals
Antimicrobial Cationic Peptides
Bacterial Proteins
Bombyx
Catechol Oxidase
Enzyme Precursors
Hemolymph
Immune System
Immunity, Innate
Intercellular Signaling Peptides and Proteins
Larva
Matrix Metalloproteinase 12
Metalloendopeptidases
Microorganisms, Genetically-Modified
Mutation
Proteins
Pseudomonas aeruginosa
Virulence

Chemicals

Antimicrobial Cationic Peptides
Bacterial Proteins
Enzyme Precursors
Intercellular Signaling Peptides and Proteins
Proteins
gloverin
pro-phenoloxidase
Catechol Oxidase
Metalloendopeptidases
pseudolysin, Pseudomonas aeruginosa
Matrix Metalloproteinase 12

Word Cloud

Created with Highcharts 10.0.0PAO1silkwormBelastasehemolymphimmuneAMPPPOactivationsystemmorimetalloproteasePseudomonasaeruginosaactivityΔlasBAntimicrobialpeptidemelanizationresponsessynthesisresultswhereasvirulenthostleadingBombyxincreasepurifiedcausedgloverinmutantlowerproductiontwokeyhumoralinsectsInducedAMPsTollIMDsignaltransductiondependsprophenoloxidaseinvasionpathogensproducetoxinsfactorscounteractshowpathwaysaffectednamedsecretedgenelasBexpressedshortlycellsinjectedlarvalhemocoelInjectioncompromisedcontrastproteaselevelverifyobtainedusinginfectedfoundPOΔlasB-infectedlarvaesignificantlyhigherwildtype-infectedmutant-inhabitedlevelsantimicrobialshoweddecreasedviabilitymortalityadditioneffectsrestoredcomplementarystraindatacollectivelyindicatedproducedimportantfactormanipulatesinfectionManipulationpathogenicbacteriumElastaseImmunePhenoloxidase

Similar Articles

Cited By