Transcriptome analysis on chlorpyrifos detoxification in Uronema marinum (Ciliophora, Oligohymenophorea).

Chongnv Wang, William A Bourland, Weijie Mu, Xuming Pan
Author Information
  1. Chongnv Wang: College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
  2. William A Bourland: Department of Biological Sciences, Boise State University, Boise, ID, 83725-1515, USA.
  3. Weijie Mu: College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China. alicejie2005@163.com.
  4. Xuming Pan: College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China. pppppp206@126.com.

Abstract

Chlorpyrifos (CPF) pollution has drawn widespread concerns in aquatic environments due to its risks to ecologic system, however, the response mechanisms of ciliates to CPF pollution were poorly studied. In our current work, the degradation of CPF by ciliates and the morphological changes of ciliates after CPF exposure were investigated. In addition, the transcriptomic profiles of the ciliate Uronema marinum, with and without exposure with CPF, were detected using digital gene expression technologies. De novo transcriptome assembly 166,829,634 reads produced from three groups (untreated, CPF treatment at 12 h and 24 h) by whole transcriptome sequencing (RNA-Seq). Gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways were analyzed in all unigenes and different expression genes to identify their biological functions and processes. Furthermore, the results indicated that genes related to the stress response, cytoskeleton and cell structure proteins, and antioxidant systems might play an important role in the resistance mechanism of ciliates. The enzyme activities of SOD and GST after CPF stress were also analyzed, and the result showed the good antioxidant capacity of SOD and GST in ciliates inferred from the increase of the activities of the two enzymes. The ciliate Uronema marinum showed a resistance response to chlorpyrifos stress at the transcriptomic level in the present work, which indicates that ciliates can be considered as a potential bioremediation agent.

Keywords

References

  1. Cell Stress Chaperones. 2014 Jan;19(1):33-52 [PMID: 23620205]
  2. J Exp Bot. 2002 May;53(372):1351-65 [PMID: 11997381]
  3. Aquat Toxicol. 2013 Jun 15;134-135:66-73 [PMID: 23584426]
  4. Ecotoxicol Environ Saf. 2018 Feb;148:327-335 [PMID: 29091835]
  5. Biochemistry. 2005 Sep 6;44(35):11864-71 [PMID: 16128588]
  6. Trends Plant Sci. 2000 May;5(5):193-8 [PMID: 10785664]
  7. Chemosphere. 2013 Jan;90(3):910-6 [PMID: 22801242]
  8. Environ Toxicol Chem. 2016 Jun;35(6):1449-57 [PMID: 26496856]
  9. Aquat Toxicol. 2006 Aug 12;79(1):9-15 [PMID: 16780970]
  10. Neuroscience. 2007 Apr 25;146(1):330-9 [PMID: 17321052]
  11. Ecotoxicol Environ Saf. 2015 Jan;111:138-45 [PMID: 25450926]
  12. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  13. Phytochemistry. 2010 Feb;71(2-3):132-41 [PMID: 19931102]
  14. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  15. Electrophoresis. 2005 Jul;26(14):2786-96 [PMID: 15966013]
  16. Aquat Toxicol. 2014 Apr;149:126-32 [PMID: 24607688]
  17. J Cell Physiol. 2002 Jul;192(1):1-15 [PMID: 12115731]
  18. Free Radic Biol Med. 2003 Feb 15;34(4):496-502 [PMID: 12566075]
  19. Water Res. 2016 Oct 15;103:182-188 [PMID: 27450356]
  20. Trends Plant Sci. 2004 May;9(5):244-52 [PMID: 15130550]
  21. Toxicol Appl Pharmacol. 2010 Feb 1;242(3):263-9 [PMID: 19874832]
  22. Toxicology. 2010 Mar 10;269(2-3):182-9 [PMID: 19622384]
  23. J Biol Chem. 1976 Oct 25;251(20):6183-8 [PMID: 977564]
  24. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  25. Ecotoxicol Environ Saf. 2013 Aug;94:28-36 [PMID: 23702303]
  26. Cell Mol Life Sci. 2010 Apr;67(7):1089-104 [PMID: 20107862]
  27. Appl Environ Microbiol. 2013 Aug;79(16):4774-85 [PMID: 23728819]
  28. Mar Pollut Bull. 2014 Aug 30;85(2):455-62 [PMID: 24882442]
  29. Cell. 2014 Jan 16;156(1-2):317-331 [PMID: 24439385]
  30. Chemosphere. 2003 Jan;50(3):293-301 [PMID: 12656248]
  31. J Exp Biol. 2000 Jun;203(Pt 12):1817-24 [PMID: 10821739]
  32. Sci Rep. 2015 Oct 21;5:15470 [PMID: 26486372]
  33. Comp Biochem Physiol C Toxicol Pharmacol. 2009 Jul;150(1):101-6 [PMID: 19345279]
  34. Environ Sci Pollut Res Int. 2014;21(13):8224-32 [PMID: 24920432]
  35. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  36. PLoS One. 2013 May 31;8(5):e64485 [PMID: 23741332]
  37. Biochem Pharmacol. 2000 Jan 1;59(1):55-63 [PMID: 10605935]
  38. Aquat Toxicol. 2007 Aug 1;83(4):272-83 [PMID: 17582519]
  39. Res Microbiol. 2005 Jan-Feb;156(1):93-103 [PMID: 15636753]
  40. J Biomed Sci. 2000 Nov-Dec;7(6):444-58 [PMID: 11060493]
  41. Plant Cell. 2009 Feb;21(2):655-67 [PMID: 19244140]
  42. Environ Toxicol Pharmacol. 2016 Jul;45:179-86 [PMID: 27314761]
  43. Anal Biochem. 1971 Nov;44(1):276-87 [PMID: 4943714]
  44. Clin Chem. 1991 Nov;37(11):1932-7 [PMID: 1934468]
  45. Aquat Toxicol. 2012 Jun 15;114-115:134-41 [PMID: 22446825]
  46. Aquat Toxicol. 2017 Jun;187:124-131 [PMID: 28411467]
  47. Lancet. 2008 Feb 16;371(9612):597-607 [PMID: 17706760]
  48. Chemosphere. 2012 Jul;88(4):377-83 [PMID: 22436588]
  49. Comp Biochem Physiol C Toxicol Pharmacol. 2013 Mar;157(2):203-11 [PMID: 23164661]
  50. Insect Sci. 2016 Feb;23(1):68-77 [PMID: 25284010]
  51. PLoS One. 2010 Mar 05;5(3):e9564 [PMID: 20221439]
  52. Aquat Toxicol. 2013 Nov 15;144-145:284-95 [PMID: 24211336]
  53. Protein Expr Purif. 2003 Nov;32(1):83-8 [PMID: 14680943]
  54. Trends Neurosci. 2010 Aug;33(8):362-72 [PMID: 20541813]
  55. Toxicol Appl Pharmacol. 2009 Oct 15;240(2):143-8 [PMID: 19631231]
  56. Environ Sci Pollut Res Int. 2017 Apr;24(12):11111-11119 [PMID: 27094278]
  57. Aquat Toxicol. 2001 Jan;51(3):277-91 [PMID: 11090890]
  58. Mar Pollut Bull. 2017 Nov 30;124(2):725-735 [PMID: 28139231]
  59. Chemosphere. 2011 Sep;84(10):1467-75 [PMID: 21550634]
  60. Plant Physiol Biochem. 2012 Apr;53:33-9 [PMID: 22306354]
  61. Mol Biol Evol. 2012 Feb;29(2):771-86 [PMID: 21976711]
  62. Ecotoxicol Environ Saf. 2015 Sep;119:25-34 [PMID: 25968601]
  63. Int J Biochem Cell Biol. 1998 Apr;30(4):445-56 [PMID: 9675878]
  64. Eur J Protistol. 2015 Apr;51(2):142-57 [PMID: 25855141]
  65. BMC Genomics. 2016 Jun 17;17:466 [PMID: 27317430]
  66. Aquat Toxicol. 2011 Jun;103(3-4):129-39 [PMID: 21458406]
  67. Free Radic Biol Med. 2002 Aug 1;33(3):337-49 [PMID: 12126755]
  68. Cell Mol Life Sci. 2005 Mar;62(6):670-84 [PMID: 15770419]
  69. Chemosphere. 2006 Jun;63(9):1491-8 [PMID: 16289700]

Grants

  1. 31501844/The National Natural Science Funds of China
  2. 31601866/The National Natural Science Funds of China
  3. QC2017017/Program of Natural Science of Heilongjiang Province of R. P. China
  4. UNPYSCT-2017178/University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province

MeSH Term

Animals
Antioxidants
Biodegradation, Environmental
Chlorpyrifos
Gene Expression Profiling
Gene Ontology
Inactivation, Metabolic
Oligohymenophorea
Transcriptome
Water Pollutants, Chemical

Chemicals

Antioxidants
Water Pollutants, Chemical
Chlorpyrifos

Word Cloud

Created with Highcharts 10.0.0CPFciliatesUronemamarinumstressresponseChlorpyrifospollutionworkexposuretranscriptomicciliateexpressiontranscriptomeanalyzedgenesantioxidantresistancemechanismactivitiesSODGSTshowedchlorpyrifosTranscriptomedrawnwidespreadconcernsaquaticenvironmentsduerisksecologicsystemhowevermechanismspoorlystudiedcurrentdegradationmorphologicalchangesinvestigatedadditionprofileswithoutdetectedusingdigitalgenetechnologiesDenovoassembly166829634readsproducedthreegroupsuntreatedtreatment12 h24 hwholesequencingRNA-SeqGeneontologyGOKyotoEncyclopaediaGenesGenomesKEGGpathwaysunigenesdifferentidentifybiologicalfunctionsprocessesFurthermoreresultsindicatedrelatedcytoskeletoncellstructureproteinssystemsmightplayimportantroleenzymealsoresultgoodcapacityinferredincreasetwoenzymeslevelpresentindicatescanconsideredpotentialbioremediationagentanalysisdetoxificationCiliophoraOligohymenophoreaResponseprofiling

Similar Articles

Cited By