Rediscovering Zygorhizidium affluens Canter: Molecular Taxonomy, Infectious Cycle, and Cryopreservation of a Chytrid Infecting the Bloom-Forming Diatom Asterionella formosa.

Cecilia Rad-Menéndez, Mélanie Gerphagnon, Andrea Garvetto, Paola Arce, Yacine Badis, Télesphore Sime-Ngando, Claire M M Gachon
Author Information
  1. Cecilia Rad-Menéndez: Culture Collection of Algae and Protozoa, Scottish Association for Marine Science, Scottish Marine Institute, Oban, United Kingdom.
  2. Mélanie Gerphagnon: Scottish Association for Marine Science, Scottish Marine Institute, Oban, United Kingdom.
  3. Andrea Garvetto: Scottish Association for Marine Science, Scottish Marine Institute, Oban, United Kingdom.
  4. Paola Arce: Scottish Association for Marine Science, Scottish Marine Institute, Oban, United Kingdom. ORCID
  5. Yacine Badis: Scottish Association for Marine Science, Scottish Marine Institute, Oban, United Kingdom.
  6. Télesphore Sime-Ngando: Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, UMR CNRS 6023, Aubière, France.
  7. Claire M M Gachon: Scottish Association for Marine Science, Scottish Marine Institute, Oban, United Kingdom claire.gachon@sams.ac.uk.

Abstract

Parasitic Chytridiomycota (chytrids) are ecologically significant in various aquatic ecosystems, notably through their roles in controlling bloom-forming phytoplankton populations and in facilitating the transfer of nutrients from inedible algae to higher trophic levels. The diversity and study of these obligate parasites, while critical to understand the interactions between pathogens and their hosts in the environment, have been hindered by challenges inherent to their isolation and stable long-term maintenance under laboratory conditions. Here, we isolated an obligate chytrid parasite (CCAP 4086/1) on the freshwater bloom-forming diatom and characterized its infectious cycle under controlled conditions. Phylogenetic analyses based on 18S, 5.8S, and 28S ribosomal DNAs (rDNAs) revealed that this strain belongs to the recently described clade SW-I within the Lobulomycetales. All morphological features observed agree with the description of the known parasite Canter. We thus provide a phylogenetic placement for this chytrid and present a robust and simple assay that assesses both the infection success and the viability of the host. We also validate a cryopreservation method for stable and cost-effective long-term storage and demonstrate its recovery after thawing. All the above-mentioned tools establish a new gold standard for the isolation and long-term preservation of parasitic aquatic chytrids, thus opening new perspectives to investigate the diversity of these organisms and their physiology in a controlled laboratory environment. Despite their ecological relevance, parasitic aquatic chytrids are understudied, especially due to the challenges associated with their isolation and maintenance in culture. Here we isolated and established a culture of a chytrid parasite infecting the bloom-forming freshwater diatom The chytrid morphology suggests that it corresponds to the parasite known as The phylogenetic reconstruction in the present study supports the hypothesis that our isolate belongs to the order Lobulomycetales and clusters within the novel clade SW-I. We also validate a cryopreservation method for stable and cost-effective long-term storage of parasitic chytrids of phytoplankton. The establishment of a monoclonal pathosystem in culture and its successful cryopreservation opens the way to further investigate this ecologically relevant parasitic interaction.

Keywords

References

  1. Dis Aquat Organ. 2003 Aug 15;56(1):59-64 [PMID: 14524502]
  2. Appl Environ Microbiol. 2011 Feb;77(4):1344-51 [PMID: 21169434]
  3. Appl Environ Microbiol. 2013 Jul;79(13):3943-51 [PMID: 23603679]
  4. Cryobiology. 1977 Jun;14(3):287-302 [PMID: 891224]
  5. Front Microbiol. 2014 May 23;5:229 [PMID: 24904543]
  6. Bioinformatics. 2012 Jun 15;28(12):1647-9 [PMID: 22543367]
  7. Mycologia. 2012 Jan-Feb;104(1):157-63 [PMID: 21828216]
  8. ISME J. 2013 Oct;7(10):2057-9 [PMID: 23657362]
  9. Cryo Letters. 2005 Jul-Aug;26(4):231-8 [PMID: 19827252]
  10. Mycol Res. 2008 Jan;112(Pt 1):70-81 [PMID: 18222678]
  11. J Microbiol Methods. 2010 Apr;81(1):69-76 [PMID: 20153382]
  12. Environ Microbiol. 2012 Sep;14(9):2480-94 [PMID: 22568577]
  13. Immunol Cell Biol. 1999 Dec;77(6):499-508 [PMID: 10571670]
  14. Environ Microbiol Rep. 2015 Jun;7(3):435-41 [PMID: 25625632]
  15. Nat Methods. 2017 Jun;14(6):587-589 [PMID: 28481363]
  16. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  17. Front Microbiol. 2014 Apr 22;5:166 [PMID: 24795703]
  18. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  19. Nucleic Acids Res. 2002 Jul 15;30(14):3059-66 [PMID: 12136088]
  20. Protist. 2017 Aug;168(4):392-407 [PMID: 28704705]
  21. Environ Microbiol. 2017 Feb;19(2):475-484 [PMID: 27207498]
  22. Cytometry. 1987 Jul;8(4):421-6 [PMID: 3304880]
  23. Mycol Res. 2004 Dec;108(Pt 12):1351-62 [PMID: 15757172]
  24. Sci Rep. 2016 Jul 22;6:30120 [PMID: 27444055]
  25. Appl Environ Microbiol. 2003 Sep;69(9):5656-63 [PMID: 12957957]
  26. Appl Environ Microbiol. 2009 Oct;75(20):6415-21 [PMID: 19633124]
  27. PLoS One. 2011;6(8):e23273 [PMID: 21887240]
  28. Environ Microbiol. 2013 Oct;15(10):2672-80 [PMID: 23551529]
  29. Mycologia. 2015 May-Jun;107(3):633-40 [PMID: 25800251]
  30. Mycol Res. 2007 Feb;111(Pt 2):129-36 [PMID: 17324753]
  31. ISME J. 2018 Apr;12(4):1008-1020 [PMID: 29416126]
  32. J Eukaryot Microbiol. 2017 May;64(3):383-393 [PMID: 27714973]
  33. Front Microbiol. 2012 Oct 12;3:361 [PMID: 23091469]
  34. Bioinformatics. 2010 Oct 1;26(19):2460-1 [PMID: 20709691]
  35. Environ Microbiol. 2012 Aug;14(8):2151-70 [PMID: 22309120]
  36. Mol Biol Evol. 2015 Jan;32(1):268-74 [PMID: 25371430]
  37. J Parasitol. 1997 Aug;83(4):575-83 [PMID: 9267395]
  38. Syst Biol. 2016 Nov;65(6):997-1008 [PMID: 27121966]
  39. Mycol Res. 2009 Apr;113(Pt 4):450-60 [PMID: 19138737]
  40. J Eukaryot Microbiol. 2018 Nov;65(6):870-881 [PMID: 29752884]
  41. ISME J. 2016 Sep;10(9):2118-28 [PMID: 26943623]

MeSH Term

Chytridiomycota
Cryopreservation
DNA, Fungal
DNA, Ribosomal
Diatoms
Phylogeny
RNA, Ribosomal, 28S
Taiwan
Virulence

Chemicals

DNA, Fungal
DNA, Ribosomal
RNA, Ribosomal, 28S

Word Cloud

Created with Highcharts 10.0.0chytridslong-termchytridparasitecryopreservationparasiticaquaticbloom-formingphytoplanktonisolationstablecultureChytridiomycotaecologicallydiversitystudyobligateenvironmentchallengesmaintenancelaboratoryconditionsisolatedfreshwaterdiatomcontrolledbelongscladeSW-IwithinLobulomycetalesknownthusphylogeneticpresentalsovalidatemethodcost-effectivestoragenewinvestigatepathosystemParasiticsignificantvariousecosystemsnotablyrolescontrollingpopulationsfacilitatingtransfernutrientsinediblealgaehighertrophiclevelsparasitescriticalunderstandinteractionspathogenshostshinderedinherentCCAP4086/1characterizedinfectiouscyclePhylogeneticanalysesbased18S58S28SribosomalDNAsrDNAsrevealedstrainrecentlydescribedmorphologicalfeaturesobservedagreedescriptionCanterprovideplacementrobustsimpleassayassessesinfectionsuccessviabilityhostdemonstraterecoverythawingabove-mentionedtoolsestablishgoldstandardpreservationopeningperspectivesorganismsphysiologyDespiteecologicalrelevanceunderstudiedespeciallydueassociatedestablishedinfectingmorphologysuggestscorrespondsreconstructionsupportshypothesisisolateorderclustersnovelestablishmentmonoclonalsuccessfulopenswayrelevantinteractionRediscoveringZygorhizidiumaffluensCanter:MolecularTaxonomyInfectiousCycleCryopreservationChytridInfectingBloom-FormingDiatomAsterionellaformosabiobankingbloomdynamicsmolecularmethodsphytopathogens

Similar Articles

Cited By