nematodes are sexually transmitted mutualists that alter the bacterial and fungal communities of their beetle host.

Cristina C Led��n-Rettig, Armin P Moczek, Erik J Ragsdale
Author Information
  1. Cristina C Led��n-Rettig: Department of Biology, Indiana University, Bloomington, IN 47405 crisledo@indiana.edu. ORCID
  2. Armin P Moczek: Department of Biology, Indiana University, Bloomington, IN 47405.
  3. Erik J Ragsdale: Department of Biology, Indiana University, Bloomington, IN 47405. ORCID

Abstract

A recent accumulation of studies has demonstrated that nongenetic, maternally transmitted factors are often critical to the health and development of offspring and can therefore play a role in ecological and evolutionary processes. In particular, microorganisms such as bacteria have been championed as heritable, symbiotic partners capable of conferring fitness benefits to their hosts. At the same time, parents may also pass various nonmicrobial organisms to their offspring, yet the roles of such organisms in shaping the developmental environment of their hosts remain largely unexplored. Here, we show that the nematode is transgenerationally inherited and sexually transmitted by the dung beetle By manipulating artificial chambers in which beetle offspring develop, we demonstrate that the presence of nematodes enhances the growth of beetle offspring, empirically challenging the paradigm that nematodes are merely commensal or even detrimental to their insect hosts. Finally, our research presents a compelling mechanism whereby the nematodes influence the health of beetle larvae: nematodes engineer the bacterial and fungal communities that also inhabit the beetle developmental chambers, including specific taxa known to be involved in biomass degradation, possibly allowing larval beetles better access to their otherwise recalcitrant, plant-based diet. Thus, our findings illustrate that nongenetic inheritance can include intermediately sized organisms that live and proliferate in close association with, and in certain cases enhance, the development of their hosts' offspring.

Keywords

Associated Data

Dryad | 10.5061/dryad.2k4m170

References

  1. Annu Rev Entomol. 1998;43:17-37 [PMID: 15012383]
  2. Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15728-33 [PMID: 24019469]
  3. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  4. Mol Phylogenet Evol. 2013 Mar;66(3):847-56 [PMID: 23159895]
  5. Trends Ecol Evol. 2012 Jun;27(6):330-6 [PMID: 22445060]
  6. Waste Manag. 2007;27(6):850-3 [PMID: 16919930]
  7. BMC Genomics. 2014 Dec 12;15:1096 [PMID: 25495900]
  8. Ecol Lett. 2017 Nov;20(11):1353-1363 [PMID: 28942603]
  9. J Parasitol. 2010 Jun;96(3):525-31 [PMID: 20557197]
  10. BMC Genomics. 2009 Oct 30;10:504 [PMID: 19878565]
  11. J Nematol. 2001 Dec;33(4):239-47 [PMID: 19265887]
  12. Nat Rev Genet. 2011 Jun 17;12(7):475-86 [PMID: 21681209]
  13. Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):14058-62 [PMID: 22891306]
  14. Nat Rev Microbiol. 2010 Mar;8(3):218-30 [PMID: 20157340]
  15. Trends Parasitol. 2014 Jun;30(6):299-308 [PMID: 24810363]
  16. PLoS One. 2013 Nov 01;8(11):e79061 [PMID: 24223880]
  17. PLoS One. 2012;7(12):e51557 [PMID: 23251574]
  18. Zoolog Sci. 2013 Mar;30(3):174-7 [PMID: 23480376]
  19. Genetics. 2017 May;206(1):55-86 [PMID: 28476862]
  20. BMC Bioinformatics. 2006 Aug 07;7:371 [PMID: 16893466]
  21. Microb Ecol. 2018 Aug;76(2):492-505 [PMID: 29270662]
  22. J Exp Biol. 2008 Jun;211(Pt 12):1927-36 [PMID: 18515723]
  23. Nat Rev Genet. 2015 Oct;16(10):611-22 [PMID: 26370902]
  24. J Microbiol. 2007 Oct;45(5):394-401 [PMID: 17978798]
  25. Trends Microbiol. 2009 Aug;17(8):348-54 [PMID: 19660955]
  26. Environ Entomol. 2007 Dec;36(6):1384-96 [PMID: 18284766]
  27. Int J Mol Sci. 2013 May 16;14(5):10242-97 [PMID: 23681010]
  28. Environ Entomol. 2008 Aug;37(4):956-63 [PMID: 18801261]
  29. WormBook. 2006 Jan 09;:1-14 [PMID: 18050464]
  30. Microb Ecol. 2010 Feb;59(2):199-211 [PMID: 19924467]
  31. J Chem Ecol. 2013 Jul;39(7):1003-6 [PMID: 23807433]
  32. J Nematol. 1993 Sep;25(3):315-31 [PMID: 19279775]
  33. Mol Ecol. 2018 Apr;27(8):2095-2108 [PMID: 29117633]
  34. Annu Rev Microbiol. 2000;54:827-48 [PMID: 11018146]
  35. Nature. 2007 Nov 22;450(7169):560-5 [PMID: 18033299]
  36. Q Rev Biol. 2009 Jun;84(2):131-76 [PMID: 19606595]
  37. Int J Syst Evol Microbiol. 2015 Feb;65(Pt 2):681-685 [PMID: 25428419]
  38. Evolution. 2001 Oct;55(10):2011-27 [PMID: 11761062]
  39. Appl Microbiol Biotechnol. 2009 Nov;85(2):323-33 [PMID: 19554324]
  40. Curr Biol. 2013 Oct 21;23(20):2038-43 [PMID: 24120638]
  41. Mol Ecol. 2016 May;25(10):2312-24 [PMID: 26992100]
  42. Sci Rep. 2013;3:1869 [PMID: 23694939]
  43. Annu Rev Genet. 2008;42:165-90 [PMID: 18983256]
  44. Appl Environ Microbiol. 2005 Jul;71(7):4117-20 [PMID: 16000830]
  45. Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2093-6 [PMID: 25561531]
  46. Curr Biol. 2011 Mar 22;21(6):R208-9 [PMID: 21419982]
  47. Nat Commun. 2016 Aug 01;7:12341 [PMID: 27477780]
  48. Microb Ecol. 2009 Nov;58(4):879-91 [PMID: 19543937]
  49. Am Nat. 2016 Dec;188(6):679-692 [PMID: 27860508]
  50. J Evol Biol. 2014 May;27(5):889-98 [PMID: 24731122]
  51. PLoS Comput Biol. 2014 Apr 03;10(4):e1003531 [PMID: 24699258]
  52. Nat Chem Biol. 2010 Apr;6(4):261-3 [PMID: 20190763]
  53. Syst Appl Microbiol. 2010 Jan;33(1):25-34 [PMID: 19962263]
  54. BMC Microbiol. 2014 May 30;14:136 [PMID: 24884866]
  55. Proc Biol Sci. 2008 Oct 7;275(1648):2293-7 [PMID: 18595837]
  56. Environ Entomol. 2016 Apr;45(2):348-56 [PMID: 26721298]

MeSH Term

Animals
Bacteria
Biological Evolution
Coleoptera
Female
Fungi
Male
Nematoda
Sexually Transmitted Diseases
Symbiosis

Word Cloud

Created with Highcharts 10.0.0beetleoffspringnematodestransmittedhostsorganismsnongenetichealthdevelopmentcanfitnessalsodevelopmentalsexuallychambersbacterialfungalcommunitiesrecentaccumulationstudiesdemonstratedmaternallyfactorsoftencriticalthereforeplayroleecologicalevolutionaryprocessesparticularmicroorganismsbacteriachampionedheritablesymbioticpartnerscapableconferringbenefitstimeparentsmaypassvariousnonmicrobialyetrolesshapingenvironmentremainlargelyunexploredshownematodetransgenerationallyinheriteddungmanipulatingartificialdevelopdemonstratepresenceenhancesgrowthempiricallychallengingparadigmmerelycommensalevendetrimentalinsectFinallyresearchpresentscompellingmechanismwherebyinfluencelarvae:engineerinhabitincludingspecifictaxaknowninvolvedbiomassdegradationpossiblyallowinglarvalbeetlesbetteraccessotherwiserecalcitrantplant-baseddietThusfindingsillustrateinheritanceincludeintermediatelysizedliveproliferatecloseassociationcertaincasesenhancehosts'mutualistsalterhostmicrobiomenicheconstructionsymbiosis

Similar Articles

Cited By