Regulatory control of DNA end resection by Sae2 phosphorylation.

Elda Cannavo, Dominic Johnson, Sara N Andres, Vera M Kissling, Julia K Reinert, Valerie Garcia, Dorothy A Erie, Daniel Hess, Nicolas H Thomä, Radoslav I Enchev, Matthias Peter, R Scott Williams, Matt J Neale, Petr Cejka
Author Information
  1. Elda Cannavo: Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Bellinzona, 6500, Switzerland.
  2. Dominic Johnson: Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RH, UK.
  3. Sara N Andres: Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, US National Institutes of Health, Research Triangle Park, 27709-2233, NC, USA.
  4. Vera M Kissling: Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, 8093, Switzerland.
  5. Julia K Reinert: Friedrich Miescher Institute for Biomedical Research, Basel, 4058, Switzerland. ORCID
  6. Valerie Garcia: Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RH, UK.
  7. Dorothy A Erie: Department of Chemistry, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, 27514, NC, USA.
  8. Daniel Hess: Friedrich Miescher Institute for Biomedical Research, Basel, 4058, Switzerland. ORCID
  9. Nicolas H Thomä: Friedrich Miescher Institute for Biomedical Research, Basel, 4058, Switzerland. ORCID
  10. Radoslav I Enchev: Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, 8093, Switzerland.
  11. Matthias Peter: Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, 8093, Switzerland. ORCID
  12. R Scott Williams: Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, US National Institutes of Health, Research Triangle Park, 27709-2233, NC, USA.
  13. Matt J Neale: Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RH, UK. m.neale@sussex.ac.uk.
  14. Petr Cejka: Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Bellinzona, 6500, Switzerland. petr.cejka@irb.usi.ch.

Abstract

DNA end resection plays a critical function in DNA double-strand break repair pathway choice. Resected DNA ends are refractory to end-joining mechanisms and are instead channeled to homology-directed repair. Using biochemical, genetic, and imaging methods, we show that phosphorylation of Saccharomyces cerevisiae Sae2 controls its capacity to promote the Mre11-Rad50-Xrs2 (MRX) nuclease to initiate resection of blocked DNA ends by at least two distinct mechanisms. First, DNA damage and cell cycle-dependent phosphorylation leads to Sae2 tetramerization. Second, and independently, phosphorylation of the conserved C-terminal domain of Sae2 is a prerequisite for its physical interaction with Rad50, which is also crucial to promote the MRX endonuclease. The lack of this interaction explains the phenotype of rad50S mutants defective in the processing of Spo11-bound DNA ends during meiotic recombination. Our results define how phosphorylation controls the initiation of DNA end resection and therefore the choice between the key DNA double-strand break repair mechanisms.

References

  1. Nat Struct Mol Biol. 2011 Aug 14;18(9):1015-9 [PMID: 21841787]
  2. Open Biol. 2013 Jul 31;3(7):130019 [PMID: 23902647]
  3. Nature. 2004 Oct 21;431(7011):1011-7 [PMID: 15496928]
  4. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11274-8 [PMID: 7479978]
  5. Yeast. 2004 Aug;21(11):947-62 [PMID: 15334558]
  6. Anal Chem. 2002 Oct 15;74(20):5383-92 [PMID: 12403597]
  7. Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):E1880-7 [PMID: 25831494]
  8. Methods Mol Biol. 2009;557:183-95 [PMID: 19799183]
  9. J Biol Chem. 2010 Apr 9;285(15):11628-37 [PMID: 20150422]
  10. Nat Struct Mol Biol. 2015 Feb;22(2):158-66 [PMID: 25580577]
  11. Chromosoma. 2018 Jun;127(2):187-214 [PMID: 29327130]
  12. PLoS Genet. 2015 Nov 19;11(11):e1005685 [PMID: 26584331]
  13. J Biol Chem. 2005 Nov 18;280(46):38631-8 [PMID: 16162495]
  14. Genes Dev. 2017 Dec 1;31(23-24):2331-2336 [PMID: 29321177]
  15. Cell. 1997 Feb 7;88(3):375-84 [PMID: 9039264]
  16. Cell. 1990 May 4;61(3):419-36 [PMID: 2185891]
  17. Mol Cell Biol. 1999 Jan;19(1):556-66 [PMID: 9858579]
  18. EMBO J. 2015 Jun 3;34(11):1509-22 [PMID: 25899817]
  19. Genes Genet Syst. 2008 Jun;83(3):209-17 [PMID: 18670132]
  20. Mol Cell Biol. 2009 Apr;29(7):1671-81 [PMID: 19139281]
  21. Mol Cell. 2009 Jan 16;33(1):117-23 [PMID: 19150433]
  22. J Biol Chem. 2015 Sep 18;290(38):22931-8 [PMID: 26231213]
  23. Mol Cell. 2007 Nov 30;28(4):638-51 [PMID: 18042458]
  24. Mol Cell. 2016 Dec 1;64(5):940-950 [PMID: 27889449]
  25. Nature. 2007 Nov 22;450(7169):509-14 [PMID: 17965729]
  26. PLoS Genet. 2009 Nov;5(11):e1000722 [PMID: 19911044]
  27. Mol Cell. 2016 Nov 3;64(3):593-606 [PMID: 27814491]
  28. Nature. 2014 Oct 2;514(7520):122-5 [PMID: 25231868]
  29. J Biol Chem. 2001 Sep 21;276(38):35458-64 [PMID: 11454871]
  30. Nature. 2015 Apr 2;520(7545):114-8 [PMID: 25539084]
  31. Nat Struct Mol Biol. 2015 Feb;22(2):150-157 [PMID: 25558984]
  32. Nat Methods. 2013 Jul;10(7):676-82 [PMID: 23749301]
  33. J Biol Chem. 2009 Apr 3;284(14):9558-65 [PMID: 19202191]
  34. Cell. 1998 Nov 25;95(5):705-16 [PMID: 9845372]
  35. Mol Cell Biol. 2014 Mar;34(5):778-93 [PMID: 24344201]
  36. Cell Cycle. 2006 Jul;5(14):1549-59 [PMID: 16861895]
  37. Anal Chem. 2003 Sep 1;75(17):4646-58 [PMID: 14632076]
  38. Nature. 2011 Oct 16;479(7372):241-4 [PMID: 22002605]
  39. Nature. 2008 Oct 2;455(7213):689-92 [PMID: 18716619]
  40. Cold Spring Harb Perspect Biol. 2015 Aug 03;7(8):a016501 [PMID: 26238353]
  41. Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):E1661-8 [PMID: 23589858]
  42. Mol Cell Biol. 2004 May;24(10):4151-65 [PMID: 15121837]
  43. Mol Cell. 2016 Oct 20;64(2):405-415 [PMID: 27746018]
  44. Cell. 2001 May 18;105(4):473-85 [PMID: 11371344]
  45. Nature. 2005 Aug 18;436(7053):1053-7 [PMID: 16107854]
  46. Genetics. 2008 Feb;178(2):711-23 [PMID: 18245357]
  47. Genes Dev. 2017 Dec 1;31(23-24):2325-2330 [PMID: 29321179]
  48. Cell. 2008 Sep 19;134(6):981-94 [PMID: 18805091]

Grants

  1. /Wellcome Trust
  2. G0800005/Medical Research Council
  3. R01 GM079480/NIGMS NIH HHS
  4. R35 GM127151/NIGMS NIH HHS

MeSH Term

Cell Cycle
DNA Breaks, Double-Stranded
DNA End-Joining Repair
DNA, Fungal
DNA-Binding Proteins
Endodeoxyribonucleases
Endonucleases
Exodeoxyribonucleases
Meiosis
Multiprotein Complexes
Phosphorylation
Protein Binding
Protein Multimerization
Recombinational DNA Repair
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins

Chemicals

DNA, Fungal
DNA-Binding Proteins
Multiprotein Complexes
RAD50 protein, S cerevisiae
SAE2 protein, S cerevisiae
Saccharomyces cerevisiae Proteins
XRS2 protein, S cerevisiae
Endodeoxyribonucleases
Endonucleases
Exodeoxyribonucleases
MRE11 protein, S cerevisiae

Word Cloud

Created with Highcharts 10.0.0DNAphosphorylationresectionSae2endrepairendsmechanismsdouble-strandbreakchoicecontrolspromoteMRXinteractionplayscriticalfunctionpathwayResectedrefractoryend-joininginsteadchanneledhomology-directedUsingbiochemicalgeneticimagingmethodsshowSaccharomycescerevisiaecapacityMre11-Rad50-Xrs2nucleaseinitiateblockedleasttwodistinctFirstdamagecellcycle-dependentleadstetramerizationSecondindependentlyconservedC-terminaldomainprerequisitephysicalRad50alsocrucialendonucleaselackexplainsphenotyperad50SmutantsdefectiveprocessingSpo11-boundmeioticrecombinationresultsdefineinitiationthereforekeyRegulatorycontrol

Similar Articles

Cited By