Interactive reservoir computing for chunking information streams.

Toshitake Asabuki, Naoki Hiratani, Tomoki Fukai
Author Information
  1. Toshitake Asabuki: Department of Complexity Science and Engineering, Univ. of Tokyo, Kashiwa, Chiba, Japan.
  2. Naoki Hiratani: Department of Complexity Science and Engineering, Univ. of Tokyo, Kashiwa, Chiba, Japan.
  3. Tomoki Fukai: Department of Complexity Science and Engineering, Univ. of Tokyo, Kashiwa, Chiba, Japan. ORCID

Abstract

Chunking is the process by which frequently repeated segments of temporal inputs are concatenated into single units that are easy to process. Such a process is fundamental to time-series analysis in biological and artificial information processing systems. The brain efficiently acquires chunks from various information streams in an unsupervised manner; however, the underlying mechanisms of this process remain elusive. A widely-adopted statistical method for chunking consists of predicting frequently repeated contiguous elements in an input sequence based on unequal transition probabilities over sequence elements. However, recent experimental findings suggest that the brain is unlikely to adopt this method, as human subjects can chunk sequences with uniform transition probabilities. In this study, we propose a novel conceptual framework to overcome this limitation. In this process, neural networks learn to predict dynamical response patterns to sequence input rather than to directly learn transition patterns. Using a mutually supervising pair of reservoir computing modules, we demonstrate how this mechanism works in chunking sequences of letters or visual images with variable regularity and complexity. In addition, we demonstrate that background noise plays a crucial role in correctly learning chunks in this model. In particular, the model can successfully chunk sequences that conventional statistical approaches fail to chunk due to uniform transition probabilities. In addition, the neural responses of the model exhibit an interesting similarity to those of the basal ganglia observed after motor habit formation.

References

  1. Nature. 2006 Apr 27;440(7088):1204-7 [PMID: 16641998]
  2. Phys Rev Lett. 2017 Jun 23;118(25):258101 [PMID: 28696758]
  3. Acta Psychol (Amst). 2012 Jul;140(3):274-82 [PMID: 22705631]
  4. Science. 2003 Aug 29;301(5637):1246-9 [PMID: 12947203]
  5. Neuron. 2009 Aug 27;63(4):544-57 [PMID: 19709635]
  6. Neuron. 2012 Jun 7;74(5):936-46 [PMID: 22681696]
  7. Neuron. 2018 Aug 8;99(3):609-623.e29 [PMID: 30057201]
  8. Neural Comput. 2002 Nov;14(11):2531-60 [PMID: 12433288]
  9. Nature. 2013 Nov 7;503(7474):78-84 [PMID: 24201281]
  10. Neurobiol Learn Mem. 1998 Jul-Sep;70(1-2):119-36 [PMID: 9753592]
  11. Cognition. 2008 Mar;106(3):1382-407 [PMID: 18035346]
  12. Nat Neurosci. 2002 May;5(5):485-90 [PMID: 11941373]
  13. Science. 1996 Dec 13;274(5294):1926-8 [PMID: 8943209]
  14. Neuron. 2015 Oct 7;88(1):2-19 [PMID: 26447569]
  15. Neuron. 2010 May 27;66(4):610-8 [PMID: 20510864]
  16. Prog Brain Res. 2011;192:33-58 [PMID: 21763517]
  17. Behav Brain Sci. 2016 Jan;39:e62 [PMID: 25869618]
  18. Front Comput Neurosci. 2014 Mar 14;8:22 [PMID: 24672469]
  19. Nat Neurosci. 2016 Mar;19(3):350-5 [PMID: 26906501]
  20. Cold Spring Harb Perspect Biol. 2015 Aug 03;7(8):a021691 [PMID: 26238359]
  21. Neuron. 2013 Jul 24;79(2):361-74 [PMID: 23810540]
  22. PLoS Comput Biol. 2015 Nov 19;11(11):e1004592 [PMID: 26584306]
  23. Mem Cognit. 2010 Oct;38(7):905-15 [PMID: 20921103]
  24. Neuron. 2015 May 20;86(4):1067-1077 [PMID: 25959731]
  25. Psychol Rev. 1956 Mar;63(2):81-97 [PMID: 13310704]
  26. Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Nov;84(5 Pt 1):051908 [PMID: 22181445]
  27. Front Comput Neurosci. 2016 Dec 20;10:136 [PMID: 28066223]
  28. Neuroimage. 2009 Jan 15;44(2):509-19 [PMID: 18929668]
  29. Science. 1980 Jun 6;208(4448):1181-2 [PMID: 7375930]
  30. J Cogn Neurosci. 2011 Dec;23(12):4057-66 [PMID: 21671745]
  31. PLoS Comput Biol. 2009 Aug;5(8):e1000464 [PMID: 19680429]
  32. Nat Neurosci. 2001 Jun;4(6):651-5 [PMID: 11369948]
  33. Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2745-50 [PMID: 18268353]
  34. Nat Neurosci. 2015 Jul;18(7):1025-33 [PMID: 26075643]
  35. Nat Neurosci. 2014 Mar;17(3):423-30 [PMID: 24464039]
  36. Nat Neurosci. 2013 Apr;16(4):486-92 [PMID: 23416451]
  37. Cereb Cortex. 2014 Mar;24(3):677-90 [PMID: 23146969]
  38. Nat Neurosci. 2013 Jul;16(7):925-33 [PMID: 23708144]
  39. Nat Commun. 2016 Jul 11;7:12176 [PMID: 27397420]
  40. Nature. 2005 Oct 20;437(7062):1158-61 [PMID: 16237445]
  41. Front Psychol. 2013 Jan 11;3:610 [PMID: 23439947]
  42. Cogn Sci. 2007 Jul 8;31(4):613-43 [PMID: 21635310]
  43. Neuron. 2003 Jan 23;37(2):361-7 [PMID: 12546829]
  44. Science. 2004 Apr 2;304(5667):78-80 [PMID: 15064413]
  45. Nature. 2010 Jul 22;466(7305):457-62 [PMID: 20651684]

MeSH Term

Brain
Computational Biology
Humans
Learning
Models, Neurological
Neural Networks, Computer
Unsupervised Machine Learning

Word Cloud

Created with Highcharts 10.0.0processtransitioninformationchunkingsequenceprobabilitieschunksequencesmodelfrequentlyrepeatedbrainchunksstreamsstatisticalmethodelementsinputcanuniformneurallearnpatternsreservoircomputingdemonstrateadditionChunkingsegmentstemporalinputsconcatenatedsingleunitseasyfundamentaltime-seriesanalysisbiologicalartificialprocessingsystemsefficientlyacquiresvariousunsupervisedmannerhoweverunderlyingmechanismsremainelusivewidely-adoptedconsistspredictingcontiguousbasedunequalHoweverrecentexperimentalfindingssuggestunlikelyadopthumansubjectsstudyproposenovelconceptualframeworkovercomelimitationnetworkspredictdynamicalresponseratherdirectlyUsingmutuallysupervisingpairmodulesmechanismworkslettersvisualimagesvariableregularitycomplexitybackgroundnoiseplayscrucialrolecorrectlylearningparticularsuccessfullyconventionalapproachesfaildueresponsesexhibitinterestingsimilaritybasalgangliaobservedmotorhabitformationInteractive

Similar Articles

Cited By (3)