New Method for Simultaneous Determination of Microcystins and Cylindrospermopsin in Vegetable Matrices by SPE-UPLC-MS/MS.

Leticia Díez-Quijada, Remedios Guzmán-Guillén, Ana I Prieto Ortega, María Llana-Ruíz-Cabello, Alexandre Campos, Vítor Vasconcelos, Ángeles Jos, Ana M Cameán
Author Information
  1. Leticia Díez-Quijada: Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain. ldiezquijada@us.es.
  2. Remedios Guzmán-Guillén: Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain. rguzman1@us.es. ORCID
  3. Ana I Prieto Ortega: Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain. anaprieto@us.es.
  4. María Llana-Ruíz-Cabello: Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain. mllana@us.es.
  5. Alexandre Campos: CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de leixões, Av General Norton de Matos, 4450-208 Matosinhos, Portugal. amoclclix@gmail.com.
  6. Vítor Vasconcelos: CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de leixões, Av General Norton de Matos, 4450-208 Matosinhos, Portugal. vmvascon@fc.up.pt. ORCID
  7. Ángeles Jos: Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain. angelesjos@us.es.
  8. Ana M Cameán: Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain. camean@us.es. ORCID

Abstract

Cyanotoxins are a large group of noxious metabolites with different chemical structure and mechanisms of action, with a worldwide distribution, producing effects in animals, humans, and crop plants. When cyanotoxin-contaminated waters are used for the irrigation of edible vegetables, humans can be in contact with these toxins through the food chain. In this work, a method for the simultaneous detection of Microcystin-LR (MC-LR), Microcystin-RR (MC-RR), Microcystin-YR (MC-YR), and Cylindrospermopsin (CYN) in lettuce has been optimized and validated, using a dual solid phase extraction (SPE) system for toxin extraction and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for analysis. Results showed linear ranges (5⁻50 ng g f.w.), low values for limit of detection (LOD) (0.06⁻0.42 ng g f.w.), and limit of quantification (LOQ) (0.16⁻0.91 ng g f.w.), acceptable recoveries (41⁻93%), and %RSD values for the four toxins. The method proved to be robust for the three variables tested. Finally, it was successfully applied to detect these cyanotoxins in edible vegetables exposed to cyanobacterial extracts under laboratory conditions, and it could be useful for monitoring these toxins in edible vegetables for better exposure estimation in terms of risk assessment.

Keywords

References

  1. Harmful Algae. 2016 May;55:31-40 [PMID: 28073545]
  2. J Hazard Mater. 2017 Feb 5;323(Pt A):56-66 [PMID: 27453259]
  3. Harmful Algae. 2018 Jun;76:47-57 [PMID: 29887204]
  4. Anal Bioanal Chem. 2016 Nov;408(27):7699-7708 [PMID: 27544518]
  5. Toxicon. 2010 May;55(5):965-72 [PMID: 19878689]
  6. Toxins (Basel). 2018 Feb 01;10(2):null [PMID: 29389882]
  7. Environ Toxicol Chem. 2012 Oct;31(10):2233-8 [PMID: 22825923]
  8. Food Chem Toxicol. 2013 Mar;53:139-52 [PMID: 23200893]
  9. Toxicon. 2011 Aug;58(2):209-18 [PMID: 21699910]
  10. Talanta. 2010 Oct 15;82(5):1995-8 [PMID: 20875607]
  11. Sci Total Environ. 2016 Oct 1;566-567:1379-1386 [PMID: 27267723]
  12. J Chromatogr A. 2005 May 6;1073(1-2):257-62 [PMID: 15909527]
  13. J Agric Food Chem. 2014 Dec 10;62(49):11831-9 [PMID: 25393522]
  14. Environ Toxicol Chem. 2017 Mar;36(3):645-654 [PMID: 27505279]
  15. J Chromatogr A. 2015 Aug 14;1407:76-89 [PMID: 26141269]
  16. Toxicon. 1999 Jul;37(7):1065-77 [PMID: 10484741]
  17. Harmful Algae. 2017 Sep;68:217-223 [PMID: 28962982]
  18. J Chromatogr A. 2004 Feb 27;1028(1):155-64 [PMID: 14969289]
  19. Talanta. 2017 Oct 1;173:101-106 [PMID: 28602183]
  20. J Toxicol Environ Health A. 2017;80(3):145-154 [PMID: 28140774]
  21. Toxins (Basel). 2015 Jun 12;7(6):2198-220 [PMID: 26075379]
  22. Chemosphere. 2014 Feb;96:1-15 [PMID: 24012139]
  23. Ther Drug Monit. 2000 Feb;22(1):89-92 [PMID: 10688267]
  24. Ecotoxicol Environ Saf. 2015 Jun;116:59-67 [PMID: 25768423]
  25. Anal Bioanal Chem. 2011 Nov;401(8):2617-30 [PMID: 21881880]
  26. Ecotoxicol Environ Saf. 2013 Aug;94:45-53 [PMID: 23726538]
  27. Sci Total Environ. 2016 Jan 15;541:1052-1058 [PMID: 26473707]
  28. Environ Toxicol. 2008 Apr;23(2):246-52 [PMID: 18214908]
  29. Water Res. 2012 Apr 1;46(5):1511-23 [PMID: 22137293]
  30. J Chromatogr A. 2005 Jul 8;1080(2):199-203 [PMID: 16008059]
  31. Water Res. 2002 Nov;36(18):4659-63 [PMID: 12418670]
  32. Anal Bioanal Chem. 2004 Oct;380(3):537-44 [PMID: 15365676]
  33. Toxicol In Vitro. 2017 Oct;44:172-181 [PMID: 28705760]
  34. J Chromatogr B Analyt Technol Biomed Life Sci. 2018 Feb 1;1074-1075:111-123 [PMID: 29358154]
  35. J Phycol. 2012 Dec;48(6):1535-7 [PMID: 27010003]
  36. Arch Toxicol. 2017 Mar;91(3):1049-1130 [PMID: 28110405]
  37. J Mass Spectrom. 1999 Jan;34(1):33-43 [PMID: 10028690]
  38. Ecotoxicol Environ Saf. 2011 Oct;74(7):1973-80 [PMID: 21723604]
  39. Talanta. 2015 Jan;131:452-9 [PMID: 25281126]
  40. Toxins (Basel). 2015 Feb 10;7(2):493-515 [PMID: 25675414]
  41. Toxins (Basel). 2017 May 26;9(6): [PMID: 28587145]
  42. Food Chem. 2017 Nov 1;234:33-37 [PMID: 28551243]
  43. Ecotoxicol Environ Saf. 2014 Apr;102:121-8 [PMID: 24530727]
  44. Environ Toxicol. 2003 Apr;18(2):94-103 [PMID: 12635097]
  45. Ecotoxicol Environ Saf. 2016 Jun;128:83-90 [PMID: 26896895]
  46. Toxicon. 2007 Nov;50(6):800-9 [PMID: 17804031]
  47. J Chromatogr A. 2016 Jan 15;1429:265-76 [PMID: 26755412]

MeSH Term

Alkaloids
Bacterial Toxins
Chromatography, High Pressure Liquid
Cyanobacteria Toxins
Food Contamination
Lactuca
Microcystins
Plant Leaves
Reproducibility of Results
Solid Phase Extraction
Spinacia oleracea
Tandem Mass Spectrometry
Uracil
Vegetables

Chemicals

Alkaloids
Bacterial Toxins
Cyanobacteria Toxins
Microcystins
cylindrospermopsin
Uracil

Word Cloud

Created with Highcharts 10.0.0ediblevegetablestoxinsmethodnggfwhumansdetectionCylindrospermopsinlettuceextractionUPLC-MS/MSvalueslimit0Cyanotoxinslargegroupnoxiousmetabolitesdifferentchemicalstructuremechanismsactionworldwidedistributionproducingeffectsanimalscropplantscyanotoxin-contaminatedwatersusedirrigationcancontactfoodchainworksimultaneousMicrocystin-LRMC-LRMicrocystin-RRMC-RRMicrocystin-YRMC-YRCYNoptimizedvalidatedusingdualsolidphaseSPEsystemtoxinultra-performanceliquidchromatography-tandemmassspectrometryanalysisResultsshowedlinearranges5⁻50lowLOD06⁻042quantificationLOQ16⁻091acceptablerecoveries41⁻93%%RSDfourprovedrobustthreevariablestestedFinallysuccessfullyapplieddetectcyanotoxinsexposedcyanobacterialextractslaboratoryconditionsusefulmonitoringbetterexposureestimationtermsriskassessmentNewMethodSimultaneousDeterminationMicrocystinsVegetableMatricesSPE-UPLC-MS/MScylindrospermopsinvalidationmicrocystins

Similar Articles

Cited By