High Potency of Essential Oil against Multi-Drug Resistant Gram-Negative Bacteria and Methicillin-Resistant .

Alessandra Oliva, Silvia Costantini, Massimiliano De Angelis, Stefania Garzoli, Mijat Božović, Maria Teresa Mascellino, Vincenzo Vullo, Rino Ragno
Author Information
  1. Alessandra Oliva: Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy. alessandra.oliva@uniroma1.it.
  2. Silvia Costantini: Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy. silviacostantini89@gmail.com.
  3. Massimiliano De Angelis: Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy. massimiliano.deangelis@uniroma1.it.
  4. Stefania Garzoli: Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy. stefania.garzoli@uniroma1.it. ORCID
  5. Mijat Božović: Faculty of Natural Sciences and Mathematics, University of Montenegro, Džordža Vašingtona bb, 81000 Podgorica, Montenegro. mijatboz@gmail.com. ORCID
  6. Maria Teresa Mascellino: Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy. mariateresa.mascellino@uniroma1.it.
  7. Vincenzo Vullo: Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy. vincenzo.vullo@uniroma1.it.
  8. Rino Ragno: Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy. rino.ragno@uniroma1.it. ORCID

Abstract

PURPOSE: Herein, an extended investigation of Tea tree oil (TTO) against a number of multi-drug resistant (MDR) microorganisms in liquid and vapor phases is reported.
METHODS: The activity of TTO was tested against methicillin-sensitive (MSSA), , and clinical strains of methicillin-resistant (MRSA), extended-spectrum beta lactamases producer carbapenem-sensitive (ESBL-CS-Kp), carbapenem-resistant (CR-Kp), (CR-Ab), and (CR-Pa). Minimal inhibitory/bactericidal concentrations (MIC/MBCs) and synergistic activity between TTO and different antimicrobials were determined. In the vapor assay (VP), TTO-impregnated discs were placed on the lid of a petri dish and incubated for 24 h at 37 °C.
RESULTS: TTO showed a potent bactericidal activity against all the tested microorganisms. TTO in combination with each reference antimicrobial showed a high level of synergism at sub-inhibitory concentrations, particularly with oxacillin (OXA) against MRSA. The VP assay showed high activity of TTO against CR-Ab.
CONCLUSION: Evaluation of in-vitro activity clearly indicated TTO as a potential effective antimicrobial treatment either alone or in association with known drugs against MDR. Therefore, TTO could represent the basis for a possible role in non-conventional regimens against and Gram-negative MDR. TTO in VP might represent a promising option for local therapy of pneumonia caused by CR-Ab.

Keywords

References

  1. Nat Prod Res. 2018 May;32(9):1056-1061 [PMID: 28927300]
  2. Nat Prod Res. 2018 Jun;32(11):1254-1259 [PMID: 28617136]
  3. Molecules. 2016 Jun 08;21(6): [PMID: 27338314]
  4. J Antimicrob Chemother. 2001 Sep;48(3):361-4 [PMID: 11533000]
  5. Curr Top Microbiol Immunol. 2017;409:325-383 [PMID: 28900682]
  6. J Craniomaxillofac Surg. 2013 Jun;41(4):321-6 [PMID: 23199627]
  7. J Antimicrob Chemother. 1995 Mar;35(3):421-4 [PMID: 7782258]
  8. Lett Appl Microbiol. 2008 Apr;46(4):428-33 [PMID: 18298453]
  9. Am J Infect Control. 2004 Nov;32(7):402-8 [PMID: 15525915]
  10. Phytomedicine. 1998 Dec;5(6):489-95 [PMID: 23196035]
  11. Antimicrob Agents Chemother. 2002 Feb;46(2):558-60 [PMID: 11796378]
  12. Front Microbiol. 2016 May 23;7:760 [PMID: 27242772]
  13. Int J Immunopathol Pharmacol. 2006 Jul-Sep;19(3):539-44 [PMID: 17026838]
  14. Int J Pharm. 2017 Mar 15;519(1-2):67-78 [PMID: 28089935]
  15. Clin Microbiol Rev. 2006 Jan;19(1):50-62 [PMID: 16418522]
  16. Planta Med. 2008 May;74(6):594-602 [PMID: 18446673]
  17. Colloids Surf B Biointerfaces. 2016 May 1;141:408-416 [PMID: 26895502]
  18. Microb Pathog. 2017 May;106:50-59 [PMID: 27815129]
  19. Antimicrob Agents Chemother. 2001 Nov;45(11):3198-201 [PMID: 11600378]
  20. Diagn Microbiol Infect Dis. 2007 Apr;57(4):413-8 [PMID: 17141452]
  21. Food Chem Toxicol. 2006 May;44(5):616-25 [PMID: 16243420]
  22. Fitoterapia. 2006 Jun;77(4):279-85 [PMID: 16690225]
  23. Phytomedicine. 2012 Feb 15;19(3-4):236-8 [PMID: 22240078]
  24. Clin Microbiol Infect. 2016 Feb;22(2):147-153 [PMID: 26409059]
  25. Expert Rev Anti Infect Ther. 2016 Aug;14(8):747-63 [PMID: 27400643]
  26. Molecules. 2017 Jan 26;22(2): [PMID: 28134788]
  27. Int J Food Microbiol. 2004 Aug 1;94(3):223-53 [PMID: 15246235]
  28. Phytomedicine. 2010 Nov;17(13):1061-6 [PMID: 20727725]
  29. Biochem Syst Ecol. 2000 Apr 1;28(4):367-382 [PMID: 10725593]
  30. Lett Appl Microbiol. 2009 Apr;48(4):387-92 [PMID: 19292822]
  31. Phytomedicine. 2010 Apr;17(5):317-22 [PMID: 19699074]
  32. Nat Prod Res. 2017 Oct;31(20):2387-2396 [PMID: 28361547]
  33. Am J Respir Crit Care Med. 2018 Mar 15;197(6):826-830 [PMID: 28902529]
  34. Med Mycol. 2015 Apr;53(3):285-94 [PMID: 25631479]
  35. Clin Microbiol Rev. 2016 Apr;29(2):201-22 [PMID: 26817630]
  36. Molecules. 2018 Feb 23;23(2):null [PMID: 29473844]
  37. J Pharm Pharmacol. 2017 Nov;69(11):1458-1467 [PMID: 28809447]
  38. J Food Sci. 2011 Oct;76(8):M538-46 [PMID: 22417594]
  39. Int Wound J. 2011 Aug;8(4):375-84 [PMID: 21564552]
  40. J Appl Microbiol. 2000 Jan;88(1):170-5 [PMID: 10735256]
  41. J Antimicrob Chemother. 2017 Jul 1;72(7):1981-1984 [PMID: 28369424]
  42. Lancet Infect Dis. 2013 Sep;13(9):785-96 [PMID: 23969216]
  43. Antimicrob Agents Chemother. 2002 Jul;46(7):2266-8 [PMID: 12069986]
  44. Antimicrob Agents Chemother. 2005 Jun;49(6):2474-8 [PMID: 15917549]
  45. Microb Ecol Health Dis. 2015 Apr 15;26:23289 [PMID: 25881620]
  46. Curr Infect Dis Rep. 2017 Nov 3;19(12):48 [PMID: 29101576]
  47. Molecules. 2017 Aug 23;22(9):null [PMID: 28832536]

MeSH Term

Anti-Bacterial Agents
Drug Resistance, Multiple, Bacterial
Drug Synergism
Gas Chromatography-Mass Spectrometry
Gram-Negative Bacteria
Melaleuca
Methicillin-Resistant Staphylococcus aureus
Microbial Sensitivity Tests
Oils, Volatile
Phytochemicals
Tea Tree Oil

Chemicals

Anti-Bacterial Agents
Oils, Volatile
Phytochemicals
Tea Tree Oil

Word Cloud

Created with Highcharts 10.0.0TTOactivityMDRmicroorganismsCR-AbVPshowedmulti-drugresistantvaportestedmethicillin-resistantMRSAcarbapenem-resistantconcentrationsassayantimicrobialhighrepresentPURPOSE:HereinextendedinvestigationTeatreeoilnumberliquidphasesreportedMETHODS:methicillin-sensitiveMSSAclinicalstrainsextended-spectrumbetalactamasesproducercarbapenem-sensitiveESBL-CS-KpCR-KpCR-PaMinimalinhibitory/bactericidalMIC/MBCssynergisticdifferentantimicrobialsdeterminedTTO-impregnateddiscsplacedlidpetridishincubated24h37°CRESULTS:potentbactericidalcombinationreferencelevelsynergismsub-inhibitoryparticularlyoxacillinOXACONCLUSION:Evaluationin-vitroclearlyindicatedpotentialeffectivetreatmenteitheraloneassociationknowndrugsThereforebasispossiblerolenon-conventionalregimensGram-negativemightpromisingoptionlocaltherapypneumoniacausedHighPotencyEssentialOilMulti-DrugResistantGram-NegativeBacteriaMethicillin-ResistantMelaleucaalternifoliaessentialoilsStaphylococcusaureusbacteria

Similar Articles

Cited By