Black Queen Evolution and Trophic Interactions Determine Plasmid Survival after the Disruption of the Conjugation Network.

Johannes Cairns, Katariina Koskinen, Reetta Penttinen, Tommi Patinen, Anna Hartikainen, Roosa Jokela, Liisa Ruusulehto, Sirja Viitamäki, Sari Mattila, Teppo Hiltunen, Matti Jalasvuori
Author Information
  1. Johannes Cairns: Department of Microbiology, University of Helsinki, Helsinki, Finland. ORCID
  2. Katariina Koskinen: Department of Biological and Environmental Science, Centre of Excellence in Biological Interactions, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland.
  3. Reetta Penttinen: Department of Biological and Environmental Science, Centre of Excellence in Biological Interactions, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland. ORCID
  4. Tommi Patinen: Department of Biological and Environmental Science, Centre of Excellence in Biological Interactions, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland.
  5. Anna Hartikainen: Department of Microbiology, University of Helsinki, Helsinki, Finland.
  6. Roosa Jokela: Department of Microbiology, University of Helsinki, Helsinki, Finland. ORCID
  7. Liisa Ruusulehto: Department of Microbiology, University of Helsinki, Helsinki, Finland.
  8. Sirja Viitamäki: Department of Microbiology, University of Helsinki, Helsinki, Finland.
  9. Sari Mattila: Department of Biological and Environmental Science, Centre of Excellence in Biological Interactions, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland.
  10. Teppo Hiltunen: Department of Microbiology, University of Helsinki, Helsinki, Finland. ORCID
  11. Matti Jalasvuori: Department of Biological and Environmental Science, Centre of Excellence in Biological Interactions, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland. ORCID

Abstract

Mobile genetic elements such as conjugative plasmids are responsible for antibiotic resistance phenotypes in many bacterial pathogens. The ability to conjugate, the presence of antibiotics, and ecological interactions all have a notable role in the persistence of plasmids in bacterial populations. Here, we set out to investigate the contribution of these factors when the conjugation network was disturbed by a plasmid-dependent bacteriophage. Phage alone effectively caused the population to lose plasmids, thus rendering them susceptible to antibiotics. Leakiness of the antibiotic resistance mechanism allowing Black Queen evolution (i.e. a "race to the bottom") was a more significant factor than the antibiotic concentration (lethal vs sublethal) in determining plasmid prevalence. Interestingly, plasmid loss was also prevented by protozoan predation. These results show that outcomes of attempts to resensitize bacterial communities by disrupting the conjugation network are highly dependent on ecological factors and resistance mechanisms. Bacterial antibiotic resistance is often a part of mobile genetic elements that move from one bacterium to another. By interfering with the horizontal movement and the maintenance of these elements, it is possible to remove the resistance from the population. Here, we show that a so-called plasmid-dependent bacteriophage causes the initially resistant bacterial population to become susceptible to antibiotics. However, this effect is efficiently countered when the system also contains a predator that feeds on bacteria. Moreover, when the environment contains antibiotics, the survival of resistance is dependent on the resistance mechanism. When bacteria can help their contemporaries to degrade antibiotics, resistance is maintained by only a fraction of the community. On the other hand, when bacteria cannot help others, then all bacteria remain resistant. The concentration of the antibiotic played a less notable role than the antibiotic used. This report shows that the survival of antibiotic resistance in bacterial communities represents a complex process where many factors present in real-life systems define whether or not resistance is actually lost.

Keywords

Associated Data

Dryad | 10.5061/dryad.10gk660

References

  1. Curr Biol. 2015 Aug 3;25(15):2034-9 [PMID: 26190075]
  2. Nature. 2000 Aug 3;406(6795):508-12 [PMID: 10952310]
  3. Nature. 1998 Jul 2;394(6688):69-72 [PMID: 9665128]
  4. Appl Environ Microbiol. 2000 Jun;66(6):2641-6 [PMID: 10831450]
  5. Trends Parasitol. 2017 Dec;33(12):925-934 [PMID: 28870496]
  6. J Glob Antimicrob Resist. 2014 Sep;2(3):198-200 [PMID: 27873730]
  7. Lancet Infect Dis. 2013 Dec;13(12):1057-98 [PMID: 24252483]
  8. Water Res. 2009 Aug;43(14):3443-52 [PMID: 19520414]
  9. J Bacteriol. 1971 Dec;108(3):1244-9 [PMID: 4945193]
  10. Mol Microbiol. 2016 Sep;101(5):743-56 [PMID: 27121483]
  11. Nature. 1988 Sep 22;335(6188):351-2 [PMID: 3047585]
  12. Proc Biol Sci. 2002 May 7;269(1494):931-6 [PMID: 12028776]
  13. Antimicrob Agents Chemother. 2016 Mar 25;60(4):2524-7 [PMID: 26787694]
  14. Mol Biol Evol. 2016 Apr;33(4):885-97 [PMID: 26668183]
  15. ISME J. 2016 Sep;10(9):2085-91 [PMID: 26953598]
  16. Evol Appl. 2013 Sep;6(6):925-32 [PMID: 24062801]
  17. Microbiol Mol Biol Rev. 2010 Sep;74(3):434-52 [PMID: 20805406]
  18. Proc Biol Sci. 2004 Jan 7;271(1534):107-11 [PMID: 15002778]
  19. Biom J. 2008 Jun;50(3):346-63 [PMID: 18481363]
  20. Int J Evol Biol. 2012;2012:874153 [PMID: 22567533]
  21. MBio. 2014 Oct 07;5(5):e01918-14 [PMID: 25293762]
  22. Nat Commun. 2014 Oct 22;5:5226 [PMID: 25335515]
  23. ISME J. 2016 Mar;10(3):778-87 [PMID: 26505830]
  24. Genetics. 2000 Aug;155(4):1505-19 [PMID: 10924453]
  25. Genetics. 2003 Dec;165(4):1641-9 [PMID: 14704155]
  26. Mob Genet Elements. 2016 May 04;6(3):e1179074 [PMID: 27510852]
  27. J Infect Dis. 2016 May 15;213(10):1579-85 [PMID: 26712950]
  28. Nat Commun. 2017 Nov 22;8(1):1689 [PMID: 29162798]
  29. Mol Syst Biol. 2013 Aug 06;9:683 [PMID: 23917989]
  30. J Virol. 1974 Sep;14(3):689-99 [PMID: 4211861]
  31. Gene. 1985;33(1):103-19 [PMID: 2985470]
  32. Proc Biol Sci. 2015 Jun 7;282(1808):20150013 [PMID: 25994670]
  33. Biol Lett. 2016 Feb;12(2):20150953 [PMID: 26843557]
  34. Proc Natl Acad Sci U S A. 1978 May;75(5):2276-80 [PMID: 276868]
  35. MBio. 2012 May 02;3(2):null [PMID: 22448042]
  36. Trends Genet. 2015 Aug;31(8):475-82 [PMID: 26078099]
  37. Nature. 2016 Jul 21;535(7612):435-439 [PMID: 27409808]
  38. Genetics. 2007 Sep;177(1):399-405 [PMID: 17890367]
  39. J Antibiot (Tokyo). 2017 Jun;70(6):805-808 [PMID: 28352105]
  40. Future Microbiol. 2016 Aug;11:999-1009 [PMID: 27503765]
  41. Plasmid. 1980 Sep;4(2):155-69 [PMID: 6152840]

Word Cloud

Created with Highcharts 10.0.0resistanceantibioticbacterialantibioticsbacteriaelementsplasmidsfactorsconjugationpopulationBlackQueengeneticmanyecologicalnotablerolenetworkplasmid-dependentbacteriophagesusceptiblemechanismevolutionconcentrationplasmidalsopredationshowcommunitiesdependentresistantcontainssurvivalhelpMobileconjugativeresponsiblephenotypespathogensabilityconjugatepresenceinteractionspersistencepopulationssetinvestigatecontributiondisturbedPhagealoneeffectivelycausedlosethusrenderingLeakinessallowingie"racebottom"significantfactorlethalvssublethaldeterminingprevalenceInterestinglylosspreventedprotozoanresultsoutcomesattemptsresensitizedisruptinghighlymechanismsBacterialoftenpartmobilemoveonebacteriumanotherinterferinghorizontalmovementmaintenancepossibleremoveso-calledcausesinitiallybecomeHowevereffectefficientlycounteredsystempredatorfeedsMoreoverenvironmentcancontemporariesdegrademaintainedfractioncommunityhandothersremainplayedlessusedreportshowsrepresentscomplexprocesspresentreal-lifesystemsdefinewhetheractuallylostEvolutionTrophicInteractionsDeterminePlasmidSurvivalDisruptionConjugationNetworktrophiclevels

Similar Articles

Cited By