OpenPathSampling: A Python Framework for Path Sampling Simulations. 1. Basics.

David W H Swenson, Jan-Hendrik Prinz, Frank Noe, John D Chodera, Peter G Bolhuis
Author Information
  1. David W H Swenson: van 't Hoff Institute for Molecular Sciences , University of Amsterdam , P.O. Box 94157, 1090 GD Amsterdam , The Netherlands.
  2. Jan-Hendrik Prinz: Computational and Systems Biology Program , Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States.
  3. Frank Noe: Department of Mathematics and Computer Science, Arnimallee 6 , Freie Universität Berlin , 14195 Berlin , Germany.
  4. John D Chodera: Computational and Systems Biology Program , Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States. ORCID
  5. Peter G Bolhuis: van 't Hoff Institute for Molecular Sciences , University of Amsterdam , P.O. Box 94157, 1090 GD Amsterdam , The Netherlands. ORCID

Abstract

Transition path sampling techniques allow molecular dynamics simulations of complex systems to focus on rare dynamical events, providing insight into mechanisms and the ability to calculate rates inaccessible by ordinary dynamics simulations. While path sampling algorithms are conceptually as simple as importance sampling Monte Carlo, the technical complexity of their implementation has kept these techniques out of reach of the broad community. Here, we introduce an easy-to-use Python framework called OpenPathSampling (OPS) that facilitates path sampling for (bio)molecular systems with minimal effort and yet is still extensible. Interfaces to OpenMM and an internal dynamics engine for simple models are provided in the initial release, but new molecular simulation packages can easily be added. Multiple ready-to-use transition path sampling methodologies are implemented, including standard transition path sampling (TPS) between reactant and product states and transition interface sampling (TIS) and its replica exchange variant (RETIS), as well as recent multistate and multiset extensions of transition interface sampling (MSTIS, MISTIS). In addition, tools are provided to facilitate the implementation of new path sampling schemes built on basic path sampling components. In this paper, we give an overview of the design of this framework and illustrate the simplicity of applying the available path sampling algorithms to a variety of benchmark problems.

References

  1. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5877-82 [PMID: 10801977]
  2. Curr Opin Struct Biol. 2001 Apr;11(2):224-30 [PMID: 11297932]
  3. Annu Rev Phys Chem. 2002;53:291-318 [PMID: 11972010]
  4. Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12562-6 [PMID: 12271136]
  5. Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12129-34 [PMID: 14523242]
  6. J Chem Phys. 2004 Jul 1;121(1):415-25 [PMID: 15260562]
  7. J Chem Phys. 2004 Jun 15;120(23):10880-9 [PMID: 15268118]
  8. J Chem Phys. 2004 Mar 1;120(9):4055-65 [PMID: 15268572]
  9. J Comput Chem. 2005 Dec;26(16):1701-18 [PMID: 16211538]
  10. J Chem Phys. 2006 Jan 14;124(2):024102 [PMID: 16422566]
  11. J Phys Chem B. 2005 Apr 14;109(14):6688-93 [PMID: 16851751]
  12. Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15859-64 [PMID: 17035504]
  13. J Chem Phys. 2007 Apr 21;126(15):155101 [PMID: 17461665]
  14. J Chem Phys. 2007 Apr 21;126(15):155102 [PMID: 17461666]
  15. Phys Rev Lett. 2007 Jun 29;98(26):268301 [PMID: 17678132]
  16. Science. 2000 Dec 8;290(5498):1903-4 [PMID: 17742054]
  17. J Chem Phys. 2008 Feb 14;128(6):064105 [PMID: 18282026]
  18. Biophys J. 2008 Nov 1;95(9):4246-57 [PMID: 18676648]
  19. J Chem Phys. 2008 Nov 21;129(19):194101 [PMID: 19026039]
  20. J Chem Phys. 2008 Sep 21;129(11):114108 [PMID: 19044951]
  21. J Chem Phys. 2008 Dec 14;129(22):224107 [PMID: 19071907]
  22. Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20227-32 [PMID: 19075242]
  23. J Chem Phys. 2009 Oct 7;131(13):134110 [PMID: 19814546]
  24. Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19011-6 [PMID: 19887634]
  25. Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2397-402 [PMID: 20133754]
  26. J Chem Phys. 2010 Feb 7;132(5):054107 [PMID: 20136305]
  27. J Chem Phys. 2009 Oct 21;131(15):154104 [PMID: 20568844]
  28. J Chem Phys. 2010 Nov 7;133(17):174109 [PMID: 21054008]
  29. J Chem Phys. 2010 Dec 28;133(24):244101 [PMID: 21197970]
  30. J Chem Phys. 2011 Feb 7;134(5):054108 [PMID: 21303093]
  31. J Chem Phys. 2011 May 7;134(17):174105 [PMID: 21548671]
  32. PLoS Comput Biol. 2011 May;7(5):e1002054 [PMID: 21637799]
  33. Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10184-9 [PMID: 21646537]
  34. J Chem Phys. 2011 Jun 28;134(24):244108 [PMID: 21721613]
  35. J Chem Phys. 2011 Jun 28;134(24):244118 [PMID: 21721623]
  36. J Chem Phys. 2011 Oct 14;135(14):145102 [PMID: 22010733]
  37. Science. 2011 Oct 28;334(6055):517-20 [PMID: 22034434]
  38. J Chem Theory Comput. 2011 Oct 11;7(10):3412-3419 [PMID: 22125474]
  39. J Chem Theory Comput. 2013 Jan 8;9(1):461-469 [PMID: 23316124]
  40. J Chem Phys. 2013 May 7;138(17):174102 [PMID: 23656109]
  41. J Chem Phys. 2013 Jul 28;139(4):044105 [PMID: 23901958]
  42. J Phys Chem B. 2014 Jun 19;118(24):6466-74 [PMID: 24555448]
  43. J Chem Phys. 2014 May 21;140(19):195102 [PMID: 24852564]
  44. Phys Chem Chem Phys. 2014 Sep 28;16(36):19181-91 [PMID: 24955434]
  45. J Chem Phys. 2014 Jul 28;141(4):044101 [PMID: 25084875]
  46. J Chem Phys. 2014 Dec 7;141(21):214106 [PMID: 25481128]
  47. Comput Sci Eng. 2015 Jul 1;12(4):34-39 [PMID: 26146490]
  48. Biophys J. 2015 Oct 20;109(8):1528-32 [PMID: 26488642]
  49. J Chem Theory Comput. 2015 Jan 13;11(1):276-85 [PMID: 26574225]
  50. J Chem Theory Comput. 2015 Nov 10;11(11):5525-42 [PMID: 26574340]
  51. J Chem Theory Comput. 2015 Jun 9;11(6):2421-8 [PMID: 26575542]
  52. J Chem Theory Comput. 2008 Mar;4(3):435-47 [PMID: 26620784]
  53. Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):15308-13 [PMID: 26621742]
  54. J Chem Theory Comput. 2006 May;2(3):840-57 [PMID: 26626691]
  55. Proc Natl Acad Sci U S A. 2016 Jun 7;113(23):E3221-30 [PMID: 27226302]
  56. J Chem Phys. 2016 Jul 14;145(2):024102 [PMID: 27421392]
  57. J Chem Phys. 2016 Oct 28;145(16):164112 [PMID: 27802610]
  58. Biophys J. 2017 Jan 10;112(1):10-15 [PMID: 28076801]
  59. Curr Opin Struct Biol. 2017 Apr;43:141-147 [PMID: 28327454]
  60. J Comput Chem. 2017 Oct 30;38(28):2439-2451 [PMID: 28749600]
  61. J Phys Chem Lett. 2017 Sep 21;8(18):4456-4460 [PMID: 28857565]
  62. Nat Chem. 2017 Oct;9(10):1005-1011 [PMID: 28937668]
  63. J Chem Phys. 2017 Oct 21;147(15):152722 [PMID: 29055317]
  64. Bioinformatics. 2018 Apr 1;34(7):1241-1242 [PMID: 29236954]
  65. J Chem Theory Comput. 2019 Feb 12;15(2):837-856 [PMID: 30359525]
  66. J Comput Aided Mol Des. 1994 Dec;8(6):695-708 [PMID: 7738605]
  67. Biophys J. 1996 Jan;70(1):97-110 [PMID: 8770190]
  68. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Sep;52(3):2893-2906 [PMID: 9963736]

Grants

  1. P30 CA008748/NCI NIH HHS
  2. R01 GM121505/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0samplingpathtransitionmoleculardynamicstechniquessimulationssystemsalgorithmssimpleimplementationPythonframeworkprovidednewinterfaceTransitionallowcomplexfocusraredynamicaleventsprovidinginsightmechanismsabilitycalculateratesinaccessibleordinaryconceptuallyimportanceMonteCarlotechnicalcomplexitykeptreachbroadcommunityintroduceeasy-to-usecalledOpenPathSamplingOPSfacilitatesbiominimaleffortyetstillextensibleInterfacesOpenMMinternalenginemodelsinitialreleasesimulationpackagescaneasilyaddedMultipleready-to-usemethodologiesimplementedincludingstandardTPSreactantproductstatesTISreplicaexchangevariantRETISwellrecentmultistatemultisetextensionsMSTISMISTISadditiontoolsfacilitateschemesbuiltbasiccomponentspapergiveoverviewdesignillustratesimplicityapplyingavailablevarietybenchmarkproblemsOpenPathSampling:FrameworkPathSamplingSimulations1Basics

Similar Articles

Cited By