Enhanced Dendritic Compartmentalization in Human Cortical Neurons.

Lou Beaulieu-Laroche, Enrique H S Toloza, Marie-Sophie van der Goes, Mathieu Lafourcade, Derrick Barnagian, Ziv M Williams, Emad N Eskandar, Matthew P Frosch, Sydney S Cash, Mark T Harnett
Author Information
  1. Lou Beaulieu-Laroche: McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
  2. Enrique H S Toloza: McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
  3. Marie-Sophie van der Goes: McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
  4. Mathieu Lafourcade: McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
  5. Derrick Barnagian: McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
  6. Ziv M Williams: Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.
  7. Emad N Eskandar: Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.
  8. Matthew P Frosch: C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, MA, USA.
  9. Sydney S Cash: Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA. Electronic address: scash@mgh.harvard.edu.
  10. Mark T Harnett: McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA. Electronic address: harnett@mit.edu.

Abstract

The biophysical features of neurons shape information processing in the brain. Cortical neurons are larger in humans than in other species, but it is unclear how their size affects synaptic integration. Here, we perform direct electrical recordings from human dendrites and report enhanced electrical compartmentalization in layer 5 pyramidal neurons. Compared to rat dendrites, distal human dendrites provide limited excitation to the soma, even in the presence of dendritic spikes. Human somas also exhibit less bursting due to reduced recruitment of dendritic electrogenesis. Finally, we find that decreased ion channel densities result in higher input resistance and underlie the lower coupling of human dendrites. We conclude that the increased length of human neurons alters their input-output properties, which will impact cortical computation. VIDEO ABSTRACT.

Keywords

References

  1. J Neurosci. 2002 Aug 15;22(16):6991-7005 [PMID: 12177197]
  2. Biophys J. 2000 Jul;79(1):314-20 [PMID: 10866957]
  3. Neuron. 2016 Aug 17;91(4):837-850 [PMID: 27537486]
  4. J Neurophysiol. 2000 May;83(5):3177-82 [PMID: 10805715]
  5. Nature. 2015 Apr 9;520(7546):180-5 [PMID: 25822789]
  6. J Neurophysiol. 2009 Aug;102(2):735-51 [PMID: 19458150]
  7. Nature. 1996 Jul 25;382(6589):363-6 [PMID: 8684467]
  8. J Neurophysiol. 2007 Dec;98(6):3330-40 [PMID: 17898147]
  9. PLoS Comput Biol. 2011 Jul;7(7):e1002107 [PMID: 21829333]
  10. Nat Neurosci. 2004 Sep;7(9):961-7 [PMID: 15322550]
  11. Cell. 2012 Apr 13;149(2):483-96 [PMID: 22500809]
  12. Nature. 2000 Mar 16;404(6775):285-9 [PMID: 10749211]
  13. J Neurophysiol. 1993 Aug;70(2):781-802 [PMID: 8410172]
  14. J Neurocytol. 2002 Mar-Jun;31(3-5):299-316 [PMID: 12815249]
  15. Nat Rev Neurosci. 2008 Mar;9(3):206-21 [PMID: 18270515]
  16. J Neurosci. 2013 Oct 23;33(43):17197-208 [PMID: 24155324]
  17. J Physiol. 1999 Dec 1;521 Pt 2:467-82 [PMID: 10581316]
  18. Front Cell Neurosci. 2015 Mar 24;9:67 [PMID: 25852470]
  19. Curr Opin Neurobiol. 2003 Jun;13(3):372-83 [PMID: 12850223]
  20. Nat Neurosci. 2013 Dec;16(12):1812-20 [PMID: 24185428]
  21. Nature. 2013 Nov 7;503(7474):115-20 [PMID: 24162850]
  22. J Neurosci. 2001 Sep 1;21(17):RC163 [PMID: 11511694]
  23. J Physiol. 1997 Dec 15;505 ( Pt 3):605-16 [PMID: 9457639]
  24. Nature. 2012 Nov 22;491(7425):599-602 [PMID: 23103868]
  25. Nat Neurosci. 2008 Jul;11(7):790-8 [PMID: 18552844]
  26. Nat Rev Neurosci. 2000 Dec;1(3):181-90 [PMID: 11257906]
  27. Nature. 2012 Dec 13;492(7428):247-51 [PMID: 23143335]
  28. J Physiol. 2001 Jun 1;533(Pt 2):447-66 [PMID: 11389204]
  29. Front Cell Neurosci. 2015 Jun 26;9:233 [PMID: 26167146]
  30. Nature. 2009 Feb 26;457(7233):1142-5 [PMID: 19151697]
  31. Sci Rep. 2018 Feb 1;8(1):2055 [PMID: 29391596]
  32. Nat Rev Neurosci. 2014 Apr;15(4):217-32 [PMID: 24646670]
  33. J Neurosci. 2006 Feb 8;26(6):1677-87 [PMID: 16467515]
  34. Neuron. 2013 Aug 7;79(3):516-29 [PMID: 23931999]
  35. J Neurosci. 2010 Dec 15;30(50):16922-37 [PMID: 21159963]
  36. J Physiol. 2008 Jul 15;586(14):3353-64 [PMID: 18483066]
  37. Nat Neurosci. 2004 Jun;7(6):621-7 [PMID: 15156147]
  38. Nature. 2012 Oct 18;490(7420):397-401 [PMID: 22940864]
  39. Front Neuroanat. 2011 May 16;5:29 [PMID: 21647212]
  40. Neuron. 2003 Mar 27;37(6):989-99 [PMID: 12670427]
  41. J Neurophysiol. 1982 Dec;48(6):1302-20 [PMID: 6296328]
  42. Neuron. 2018 Jan 3;97(1):75-82.e3 [PMID: 29249288]
  43. PLoS Comput Biol. 2015 Mar 13;11(3):e1004090 [PMID: 25768881]
  44. J Neurosci. 2015 Jan 21;35(3):1024-37 [PMID: 25609619]
  45. J Neurosci. 1998 May 15;18(10):3501-10 [PMID: 9570781]
  46. Elife. 2016 Oct 06;5: [PMID: 27710767]
  47. Science. 2002 Mar 8;295(5561):1907-10 [PMID: 11884759]
  48. Cereb Cortex. 2015 Dec;25(12):4839-53 [PMID: 26318661]
  49. Proc IEEE Inst Electr Electron Eng. 2014 May;102(5):null [PMID: 25554708]
  50. Neuron. 2015 Dec 16;88(6):1253-1267 [PMID: 26671462]
  51. Science. 2009 Aug 7;325(5941):756-60 [PMID: 19661433]
  52. Elife. 2017 Dec 05;6: [PMID: 29205151]
  53. Science. 2015 Jul 3;349(6243):74-7 [PMID: 26138976]
  54. J Neurosci. 2015 Mar 18;35(11):4501-14 [PMID: 25788669]
  55. Annu Rev Neurosci. 2005;28:503-32 [PMID: 16033324]
  56. Annu Rev Neurosci. 2013 Jul 8;36:1-24 [PMID: 23841837]
  57. Nat Neurosci. 2017 Aug;20(8):1114-1121 [PMID: 28628104]
  58. Science. 2016 Dec 23;354(6319):1587-1590 [PMID: 28008068]

Grants

  1. R01 NS106031/NINDS NIH HHS
  2. R21 NS103098/NINDS NIH HHS

MeSH Term

Action Potentials
Adult
Animals
Dendrites
Female
Humans
Ion Channels
Male
Pyramidal Cells
Rats
Rats, Sprague-Dawley
Species Specificity
Synaptic Potentials

Chemicals

Ion Channels

Word Cloud

Created with Highcharts 10.0.0humanneuronsdendritesCorticalelectricalcompartmentalizationdendriticHumanioncomputationbiophysicalfeaturesshapeinformationprocessingbrainlargerhumansspeciesis unclearsizeaffectssynapticintegrationperformdirectrecordingsreportenhancedlayer5pyramidalComparedratdistalprovidelimitedexcitationsomaevenpresencespikessomasalsoexhibitlessburstingduereducedrecruitmentelectrogenesisFinallyfinddecreasedchanneldensitiesresulthigherinputresistanceunderlielowercouplingconcludeincreasedlengthaltersinput-outputpropertieswillimpactcorticalVIDEOABSTRACTEnhancedDendriticCompartmentalizationNeuronsbiophysicscortexdendritechannelsneuronpatch-clamp

Similar Articles

Cited By