Predicting how and when hidden neurons skew measured synaptic interactions.

Braden A W Brinkman, Fred Rieke, Eric Shea-Brown, Michael A Buice
Author Information
  1. Braden A W Brinkman: Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of America. ORCID
  2. Fred Rieke: Department of Physiology and Biophysics, University of Washington, Seattle, Washington, United States of America. ORCID
  3. Eric Shea-Brown: Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of America.
  4. Michael A Buice: Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of America. ORCID

Abstract

A major obstacle to understanding neural coding and computation is the fact that experimental recordings typically sample only a small fraction of the neurons in a circuit. Measured neural properties are skewed by interactions between recorded neurons and the "hidden" portion of the network. To properly interpret neural data and determine how biological structure gives rise to neural circuit function, we thus need a better understanding of the relationships between measured effective neural properties and the true underlying physiological properties. Here, we focus on how the effective spatiotemporal dynamics of the synaptic interactions between neurons are reshaped by coupling to unobserved neurons. We find that the effective interactions from a pre-synaptic neuron r' to a post-synaptic neuron r can be decomposed into a sum of the true interaction from r' to r plus corrections from every directed path from r' to r through unobserved neurons. Importantly, the resulting formula reveals when the hidden units have-or do not have-major effects on reshaping the interactions among observed neurons. As a particular example of interest, we derive a formula for the impact of hidden units in random networks with "strong" coupling-connection weights that scale with [Formula: see text], where N is the network size, precisely the scaling observed in recent experiments. With this quantitative relationship between measured and true interactions, we can study how network properties shape effective interactions, which properties are relevant for neural computations, and how to manipulate effective interactions.

References

  1. Epilepsy Res. 2008 May;79(2-3):173-86 [PMID: 18359200]
  2. Proc Natl Acad Sci U S A. 2014 Sep 30;111(39):14247-52 [PMID: 25225403]
  3. PLoS Comput Biol. 2017 Jun 23;13(6):e1005583 [PMID: 28644840]
  4. Neuron. 2013 Mar 6;77(5):845-58 [PMID: 23473315]
  5. Nature. 2010 Oct 7;467(7316):673-7 [PMID: 20930838]
  6. Biol Cybern. 1988;59(4-5):265-75 [PMID: 3196770]
  7. Curr Opin Neurobiol. 2008 Dec;18(6):582-8 [PMID: 19081241]
  8. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Feb;87(2):022127 [PMID: 23496479]
  9. Phys Rev Lett. 2010 Mar 19;104(11):118701 [PMID: 20366507]
  10. Brain. 2014 Jan;137(Pt 1):197-207 [PMID: 24271324]
  11. Science. 2013 Nov 1;342(6158):604-7 [PMID: 24179222]
  12. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Aug;78(2 Pt 1):021902 [PMID: 18850860]
  13. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Dec;90(6):062801 [PMID: 25615142]
  14. Front Syst Neurosci. 2016 Feb 17;10:11 [PMID: 26924968]
  15. PLoS Comput Biol. 2007 Oct;3(10):1871-78 [PMID: 17922568]
  16. J Comput Neurosci. 2012 Aug;33(1):97-121 [PMID: 22203465]
  17. Dev Neurobiol. 2017 May;77(5):597-609 [PMID: 27314561]
  18. Network. 2007 Dec;18(4):375-407 [PMID: 17943613]
  19. PLoS Comput Biol. 2012;8(11):e1002775 [PMID: 23166484]
  20. Neurology. 2013 Apr 9;80(15):1370-7 [PMID: 23486876]
  21. Nature. 2008 Aug 21;454(7207):995-9 [PMID: 18650810]
  22. PLoS One. 2013;8(1):e53922 [PMID: 23335980]
  23. PLoS Comput Biol. 2008 Jun 27;4(6):e1000100 [PMID: 18584043]
  24. PLoS One. 2010 May 26;5(5):e10839 [PMID: 20520774]
  25. Nat Rev Neurosci. 2014 Oct;15(10):683-95 [PMID: 25186238]
  26. J Neurosci. 2005 Nov 23;25(47):11003-13 [PMID: 16306413]
  27. Math Biosci Eng. 2014 Feb;11(1):149-65 [PMID: 24245678]
  28. Phys Rev E. 2017 Jan;95(1-1):012122 [PMID: 28208380]
  29. Nat Neurosci. 2016 Dec;19(12):1690-1696 [PMID: 27749827]
  30. PLoS Comput Biol. 2011 May;7(5):e1002059 [PMID: 21625580]
  31. J Neurosci. 2008 Sep 10;28(37):9239-48 [PMID: 18784304]
  32. Math Biosci. 2007 Feb;205(2):204-51 [PMID: 17070863]
  33. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):012820 [PMID: 25679669]
  34. Network. 2004 Nov;15(4):243-62 [PMID: 15600233]
  35. Biol Cybern. 2003 Oct;89(4):289-302 [PMID: 14605893]
  36. Neuroimage. 2013 Nov 15;82:564-73 [PMID: 23792218]
  37. Nat Neurosci. 2016 Mar;19(3):375-82 [PMID: 26906504]
  38. Phys Rev Lett. 1988 Jul 18;61(3):259-262 [PMID: 10039285]
  39. Front Comput Neurosci. 2015 May 18;9:57 [PMID: 26042024]
  40. Nat Neurosci. 2004 Dec;7(12):1345-52 [PMID: 15558066]
  41. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Mar;89(3):032802 [PMID: 24730894]
  42. PLoS Comput Biol. 2015 Oct 14;11(10):e1004464 [PMID: 26465147]
  43. Science. 1996 Dec 6;274(5293):1724-6 [PMID: 8939866]
  44. Phys Biol. 2017 Jul 19;14(4):045010 [PMID: 28510539]
  45. PLoS Comput Biol. 2011 Jan 20;7(1):e1001056 [PMID: 21283777]
  46. Neuroimage. 2010 Sep;52(3):766-76 [PMID: 20116438]
  47. Science. 2001 Aug 10;293(5532):1159-63 [PMID: 11498596]
  48. J Neurosci. 2010 Dec 15;30(50):16876-85 [PMID: 21159959]
  49. Neuron. 2013 Sep 4;79(5):987-1000 [PMID: 24012010]
  50. Epilepsy Behav. 2015 Sep;50:162-70 [PMID: 26159729]
  51. Nat Neurosci. 2012 Nov;15(11):1498-505 [PMID: 23001062]
  52. Mol Biosyst. 2010 Oct;6(10):1890-900 [PMID: 20556289]

Grants

  1. /Howard Hughes Medical Institute

MeSH Term

Computational Biology
Models, Neurological
Models, Statistical
Neurons
Synapses

Word Cloud

Created with Highcharts 10.0.0interactionsneuronsneuralpropertieseffectivenetworkmeasuredtruer'rhiddenunderstandingcircuitsynapticunobservedneuroncanformulaunitsobservedmajorobstaclecodingcomputationfactexperimentalrecordingstypicallysamplesmallfractionMeasuredskewedrecorded"hidden"portionproperlyinterpretdatadeterminebiologicalstructuregivesrisefunctionthusneedbetterrelationshipsunderlyingphysiologicalfocusspatiotemporaldynamicsreshapedcouplingfindpre-synapticpost-synapticdecomposedsuminteractionpluscorrectionseverydirectedpathImportantlyresultingrevealshave-orhave-majoreffectsreshapingamongparticularexampleinterestderiveimpactrandomnetworks"strong"coupling-connectionweightsscale[Formula:seetext]NsizepreciselyscalingrecentexperimentsquantitativerelationshipstudyshaperelevantcomputationsmanipulatePredictingskew

Similar Articles

Cited By