Poor between-session recall of extinction learning and hippocampal activation and connectivity in children.

Hilary A Marusak, Craig Peters, Aneesh Hehr, Farrah Elrahal, Christine A Rabinak
Author Information
  1. Hilary A Marusak: Department of Pharmacy Practice, Wayne State University College of Pharmacy and Health Sciences, Detroit, MI, United States. Electronic address: hmarusak@med.wayne.edu.
  2. Craig Peters: Department of Pharmacy Practice, Wayne State University College of Pharmacy and Health Sciences, Detroit, MI, United States.
  3. Aneesh Hehr: Department of Pharmacy Practice, Wayne State University College of Pharmacy and Health Sciences, Detroit, MI, United States.
  4. Farrah Elrahal: Department of Pharmacy Practice, Wayne State University College of Pharmacy and Health Sciences, Detroit, MI, United States.
  5. Christine A Rabinak: Department of Pharmacy Practice, Wayne State University College of Pharmacy and Health Sciences, Detroit, MI, United States; Department of Pharmaceutical Sciences, Wayne State University College of Pharmacy and Health Sciences, Detroit, MI, United States; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States.

Abstract

BACKGROUND: In healthy adults, successful between-session recall of extinction learning depends on the hippocampus and ventromedial prefrontal cortex (vmPFC), especially when tested in the extinction context. Poor extinction recall and dysfunction within hippocampal-vmPFC circuitry are associated with fear-based disorders (e.g., anxiety, posttraumatic stress disorder). Despite the early age of onset of virtually all fear-based disorders and the protracted development of the hippocampus and vmPFC across the first two decades of life, little is known about extinction recall and the underlying neural correlates in children.
METHODS: Here, we tested extinction recall in 43 pre-adolescent children (ages 6-11 yrs) by coupling functional magnetic resonance imaging and virtual reality with a novel interpersonal threat-related two-day (ABBA) fear-extinction paradigm. Conditioned fear responding was assessed at behavioral, subjective, physiological, and neural levels.
RESULTS: Although children demonstrated intact within-session extinction, there was poor between-session recall of extinction learning (retention index: 13.56%), evidenced by elevations in skin conductance, avoidant behavioral responses, and subjective ratings. Elevations in conditioning fear responding were accompanied by activation in the hippocampus and insula, and increased connectivity of the hippocampus with the insula and dorsal anterior cingulate cortex - regions implicated in the return of fear in adult studies. Children who kept more distance from the extinguished cue during extinction subsequently demonstrated heightened hippocampal-cingulate coupling during recall, suggesting that avoidant behavior interferes with extinction retention.
CONCLUSIONS: Poor extinction recall in children may have implications for developmental vulnerability to fear-based disorders, and for the application of therapeutic strategies that rely on principles of extinction (e.g., exposure therapy) to pediatric samples.

Keywords

References

  1. Sci Rep. 2017 Dec 4;7(1):16840 [PMID: 29203805]
  2. J Neurosci. 2008 Apr 9;28(15):4028-36 [PMID: 18400902]
  3. Soc Cogn Affect Neurosci. 2016 Sep;11(9):1411-21 [PMID: 27053767]
  4. J Neurosci. 2011 Nov 23;31(47):17269-77 [PMID: 22114293]
  5. Nat Rev Neurosci. 2009 Jan;10(1):59-70 [PMID: 19096369]
  6. Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10706-11 [PMID: 16024728]
  7. Learn Mem. 2015 Oct 15;22(11):537-43 [PMID: 26472643]
  8. Depress Anxiety. 2015 Apr;32(4):277-88 [PMID: 25427438]
  9. Dev Psychobiol. 2016 May;58(4):471-81 [PMID: 26798984]
  10. Front Behav Neurosci. 2017 May 09;11:76 [PMID: 28536511]
  11. Dev Sci. 2010 Jan 1;13(1):201-12 [PMID: 20121876]
  12. PLoS One. 2012;7(10):e46970 [PMID: 23056545]
  13. Neuroimage. 2012 Apr 15;60(3):1759-70 [PMID: 22209809]
  14. Neuroimage. 2015 Nov 15;122:262-71 [PMID: 26220745]
  15. Hippocampus. 2017 Aug;27(8):883-889 [PMID: 28498605]
  16. Cereb Cortex. 2015 Aug;25(8):2204-12 [PMID: 24591525]
  17. Cereb Cortex. 2011 Sep;21(9):1954-62 [PMID: 21263037]
  18. Dev Neurosci. 2012;34(2-3):101-14 [PMID: 22571921]
  19. Trends Cogn Sci. 2013 Dec;17(12):627-40 [PMID: 24183779]
  20. Neuropsychopharmacology. 2010 Sep;35(10):2134-42 [PMID: 20592716]
  21. Behav Res Ther. 2005 Mar;43(3):323-36 [PMID: 15680929]
  22. Neurobiol Learn Mem. 2014 Sep;113:125-34 [PMID: 24055595]
  23. Nat Rev Neurosci. 2013 Jun;14(6):417-28 [PMID: 23635870]
  24. Br J Psychiatry. 2010 Nov;197(5):378-85 [PMID: 21037215]
  25. J Neurosci. 2007 Feb 28;27(9):2349-56 [PMID: 17329432]
  26. Neuropsychopharmacology. 2015 Feb;40(3):537-45 [PMID: 25212487]
  27. Neuropsychopharmacology. 2008 Jan;33(1):56-72 [PMID: 17882236]
  28. Neuropsychopharmacology. 2015 Jan;40(1):50-60 [PMID: 25035083]
  29. Neuroimage. 2002 Jan;15(1):273-89 [PMID: 11771995]
  30. J Neurosci. 2014 Oct 1;34(40):13435-43 [PMID: 25274821]
  31. Neuroimage. 2015 Nov 1;121:171-83 [PMID: 26166625]
  32. Biol Psychiatry. 2014 Jun 1;75(11):e19-20 [PMID: 24074635]
  33. J Neurosci. 2006 Sep 13;26(37):9503-11 [PMID: 16971534]
  34. Hum Brain Mapp. 2017 Jan;38(1):182-201 [PMID: 27585371]
  35. Biol Psychiatry. 2009 Dec 15;66(12):1075-82 [PMID: 19748076]
  36. Neuron. 2002 Aug 15;35(4):625-41 [PMID: 12194864]
  37. Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1182-7 [PMID: 21220344]
  38. Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):17093-8 [PMID: 23027931]
  39. J Consult Clin Psychol. 1999 Aug;67(4):599-604 [PMID: 10450633]
  40. Arch Gen Psychiatry. 2005 Jun;62(6):593-602 [PMID: 15939837]
  41. Dev Cogn Neurosci. 2014 Oct;10:148-59 [PMID: 25282602]
  42. J Exp Child Psychol. 2016 Jun;146:95-105 [PMID: 26922673]
  43. Biol Psychol. 2014 Jul;100:1-12 [PMID: 24746848]
  44. PLoS One. 2009 Dec 03;4(12):e8160 [PMID: 19997633]
  45. Front Behav Neurosci. 2017 Feb 22;11:32 [PMID: 28275342]
  46. Neurobiol Learn Mem. 2014 Sep;113:135-42 [PMID: 24183838]
  47. Biol Psychiatry. 2009 Mar 15;65(6):455-63 [PMID: 18986648]
  48. Hum Brain Mapp. 2017 Feb;38(2):1082-1091 [PMID: 27767246]
  49. Cereb Cortex. 2011 Mar;21(3):530-8 [PMID: 20576926]
  50. Biol Psychol. 2013 Jan;92(1):90-6 [PMID: 22223096]
  51. Dev Psychobiol. 2012 Nov;54(7):675-84 [PMID: 22072276]
  52. Biol Psychiatry. 2007 Sep 1;62(5):446-54 [PMID: 17217927]
  53. Learn Mem. 2013 Feb 20;20(3):164-9 [PMID: 23427168]
  54. Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13507-12 [PMID: 17679691]
  55. Arch Gen Psychiatry. 2012 Nov;69(11):1151-60 [PMID: 23117636]
  56. Proc Natl Acad Sci U S A. 2011 Mar 15;108(11):4500-5 [PMID: 21368210]
  57. Biol Psychiatry. 2007 Nov 15;62(10):1191-4 [PMID: 17707349]
  58. Neurosci Biobehav Rev. 2017 Jun;77:247-285 [PMID: 28263758]
  59. J Neurosci. 2013 Mar 6;33(10):4584-93 [PMID: 23467374]
  60. Hippocampus. 2007;17(9):749-58 [PMID: 17604353]

Grants

  1. K01 MH101123/NIMH NIH HHS
  2. R61 MH111935/NIMH NIH HHS

MeSH Term

Brain Mapping
Child
Child Development
Conditioning, Classical
Extinction, Psychological
Fear
Female
Galvanic Skin Response
Gyrus Cinguli
Hippocampus
Humans
Magnetic Resonance Imaging
Male
Mental Recall
Prefrontal Cortex
Virtual Reality

Word Cloud

Created with Highcharts 10.0.0extinctionrecallchildrenlearninghippocampusbetween-sessioncortexPoorfear-baseddisordersfearretentionvmPFCtestedegneuralcouplingrespondingbehavioralsubjectivedemonstratedavoidantactivationinsulaconnectivitycingulateBACKGROUND:healthyadultssuccessfuldependsventromedialprefrontalespeciallycontextdysfunctionwithinhippocampal-vmPFCcircuitryassociatedanxietyposttraumaticstressdisorderDespiteearlyageonsetvirtuallyprotracteddevelopmentacrossfirsttwodecadeslifelittleknownunderlyingcorrelatesMETHODS:43pre-adolescentages6-11yrsfunctionalmagneticresonanceimagingvirtualrealitynovelinterpersonalthreat-relatedtwo-dayABBAfear-extinctionparadigmConditionedassessedphysiologicallevelsRESULTS:Althoughintactwithin-sessionpoorindex:1356%evidencedelevationsskinconductanceresponsesratingsElevationsconditioningaccompaniedincreaseddorsalanterior-regionsimplicatedreturnadultstudiesChildrenkeptdistanceextinguishedcuesubsequentlyheightenedhippocampal-cingulatesuggestingbehaviorinterferesCONCLUSIONS:mayimplicationsdevelopmentalvulnerabilityapplicationtherapeuticstrategiesrelyprinciplesexposuretherapypediatricsampleshippocampalAnteriorContextExtinctionFearInsulafMRI

Similar Articles

Cited By