Common Cervicovaginal Microbial Supernatants Alter Cervical Epithelial Function: Mechanisms by Which Contributes to Cervical Health.

Lauren Anton, Luz-Jeannette Sierra, Ann DeVine, Guillermo Barila, Laura Heiser, Amy G Brown, Michal A Elovitz
Author Information
  1. Lauren Anton: Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States.
  2. Luz-Jeannette Sierra: Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States.
  3. Ann DeVine: Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States.
  4. Guillermo Barila: Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States.
  5. Laura Heiser: Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States.
  6. Amy G Brown: Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States.
  7. Michal A Elovitz: Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States.

Abstract

Cervicovaginal (CV) microbiota is associated with vaginal health and disease in non-pregnant women. Recent studies in pregnant women suggest that specific CV microbes are associated with preterm birth (PTB). While the associations between CV microbiota and adverse outcomes have been demonstrated, the mechanisms regulating the associations remain unclear. As the CV space contains an epithelial barrier, we postulate that CV microbiota can alter the epithelial barrier function. We investigated the biological, molecular, and epigenetic effects of , and on the cervical epithelial barrier function and determined whether mitigates the effects of lipopolysaccharide (LPS) and on the cervical epithelial barrier as a possible mechanism by which CV microbiota mitigates disease risk. Ectocervical and endocervical cells treated with , and bacteria-free supernatants alone or combined were used to measure cell permeability, adherens junction proteins, inflammatory mediators, and miRNAs. Ectocervical and endocervical permeability increased after and exposure. Soluble epithelial cadherin increased after exposure to but not or . A Luminex cytokine/chemokine panel revealed increased proinflammatory mediators in all three bacteria-free supernatants with and having more diverse inflammatory effects. and altered the expression of cervical-, microbial-, and inflammatory-associated miRNAs. mitigated the LPS or -induced disruption of the cervical epithelial barrier and reversed the -mediated increase in miRNA expression. colonization of the CV space of a pregnant C57/B6 mouse resulted in 100% PTB. These findings demonstrate that and alter the cervical epithelial barrier by regulating adherens junction proteins, cervical immune responses, and miRNA expressions. These results provide evidence that confers protection to the cervical epithelial barrier by mitigating LPS- or -induced miRNAs associated with cervical remodeling, inflammation, and PTB. This study provides further evidence that the CV microbiota plays a role in cervical function by altering the cervical epithelial barrier and initiating PTB. Thus, targeting the CV microbiota and/or its effects on the cervical epithelium may be a potential therapeutic strategy to prevent PTB.

Keywords

References

  1. Probiotics Antimicrob Proteins. 2018 Jun;10(2):236-242 [PMID: 29071554]
  2. Microbiome. 2014 Feb 03;2(1):4 [PMID: 24484853]
  3. Int J Med Microbiol. 2015 Dec;305(8):815-27 [PMID: 26372530]
  4. ISME J. 2014 Sep;8(9):1781-93 [PMID: 24599071]
  5. PLoS One. 2016 Jan 05;11(1):e0146663 [PMID: 26730599]
  6. Microbes Infect. 2002 Mar;4(3):319-24 [PMID: 11909742]
  7. J Biomech Eng. 2017 Jun 1;139(6): [PMID: 28418563]
  8. J Matern Fetal Neonatal Med. 2012 Nov;25(11):2395-400 [PMID: 22676250]
  9. Microbiome. 2014 May 27;2:18 [PMID: 24987521]
  10. Genome Announc. 2015 Apr 09;3(2): [PMID: 25858849]
  11. Am J Obstet Gynecol. 2010 Jan;202(1):80.e1-8 [PMID: 19889381]
  12. FEMS Microbiol Rev. 2004 Oct;28(4):405-40 [PMID: 15374659]
  13. Am J Perinatol. 2017 Sep;34(11):1078-1083 [PMID: 28605823]
  14. Am J Reprod Immunol. 2012 Jan;67(1):34-43 [PMID: 21752147]
  15. Trends Microbiol. 2017 Mar;25(3):182-191 [PMID: 27914761]
  16. J Clin Invest. 2018 May 1;128(5):1985-1999 [PMID: 29629904]
  17. FEMS Immunol Med Microbiol. 2006 Dec;48(3):424-32 [PMID: 17059467]
  18. Sci Transl Med. 2016 Aug 3;8(350):350ra102 [PMID: 27488896]
  19. Am J Pathol. 2003 Nov;163(5):2103-11 [PMID: 14578208]
  20. Mucosal Immunol. 2015 Nov;8(6):1339-48 [PMID: 25850655]
  21. Cochrane Database Syst Rev. 2015 Jun 20;(6):CD002250 [PMID: 26092137]
  22. Rev Infect Dis. 1990 Sep-Oct;12(5):856-72 [PMID: 2237129]
  23. Acta Biomater. 2016 May;36:195-209 [PMID: 26961804]
  24. Ann N Y Acad Sci. 1959 Nov 18;83:280-9 [PMID: 13826525]
  25. Epigenetics. 2015;10(3):221-8 [PMID: 25611922]
  26. Epigenomics. 2017 Jan;9(1):33-45 [PMID: 27936911]
  27. Immunity. 2017 Jan 17;46(1):29-37 [PMID: 28087240]
  28. J Infect Dis. 1989 Sep;160(3):490-6 [PMID: 2668431]
  29. Microbiology (Reading). 2010 Feb;156(Pt 2):392-399 [PMID: 19910411]
  30. FASEB J. 2014 Jan;28(1):94-105 [PMID: 24076962]
  31. PLoS One. 2012;7(10):e47075 [PMID: 23071716]
  32. Biol Reprod. 1999 Feb;60(2):508-14 [PMID: 9916021]
  33. PLoS Pathog. 2010 Apr 08;6(4):e1000852 [PMID: 20386714]
  34. Nat Rev Genet. 2012 Mar 13;13(4):260-70 [PMID: 22411464]
  35. PLoS One. 2013;8(3):e59539 [PMID: 23527214]
  36. Clin Infect Dis. 2015 Mar 15;60(6):860-7 [PMID: 25452591]
  37. Am J Obstet Gynecol. 1993 Oct;169(4):764-74 [PMID: 8238130]
  38. PLoS One. 2011;6(7):e22770 [PMID: 21818387]
  39. Microbiome. 2017 Jan 19;5(1):6 [PMID: 28103952]
  40. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4680-7 [PMID: 20534435]
  41. Cochrane Database Syst Rev. 2013 Jan 31;(1):CD000262 [PMID: 23440777]
  42. Res Microbiol. 2017 Nov - Dec;168(9-10):826-836 [PMID: 28951208]
  43. J Infect Dis. 1999 Apr;179(4):924-30 [PMID: 10068588]
  44. PLoS One. 2018 Jan 18;13(1):e0191524 [PMID: 29346438]
  45. Semin Perinatol. 1998 Aug;22(4):242-50 [PMID: 9738988]
  46. J Infect Dis. 1999 May;179 Suppl 3:S448-53 [PMID: 10099117]
  47. J Bacteriol. 2008 Jun;190(11):3896-903 [PMID: 18390664]
  48. J Clin Invest. 2012 Jun;122(6):2239-51 [PMID: 22565313]
  49. Immunol Lett. 2013 Nov-Dec;156(1-2):102-9 [PMID: 24120511]
  50. J Bacteriol. 2011 Mar;193(5):1034-41 [PMID: 21169489]
  51. BMC Infect Dis. 2016 Apr 23;16:180 [PMID: 27107961]
  52. Proc Natl Acad Sci U S A. 2017 Sep 12;114(37):9966-9971 [PMID: 28847941]
  53. Infect Immun. 2008 Oct;76(10):4498-508 [PMID: 18644884]
  54. mBio. 2011 Oct 25;2(6):e00168-11 [PMID: 22027006]
  55. Lancet. 2001 Mar 31;357(9261):989-94 [PMID: 11293641]
  56. Sci Rep. 2017 Jun 8;7(1):3020 [PMID: 28596604]
  57. N Engl J Med. 2000 May 18;342(20):1500-7 [PMID: 10816189]
  58. Am J Obstet Gynecol. 2014 Mar;210(3):221.e1-11 [PMID: 24565431]
  59. Future Microbiol. 2011 May;6(5):567-82 [PMID: 21585263]
  60. Am J Obstet Gynecol. 1996 Jan;174(1 Pt 1):206-10 [PMID: 8572007]
  61. Ann N Y Acad Sci. 1994 Sep 30;734:414-29 [PMID: 7978942]
  62. Biol Reprod. 2012 Dec 06;87(6):132 [PMID: 23053434]
  63. Am J Obstet Gynecol. 2015 Jun;212(6):776.e1-776.e12 [PMID: 25827503]
  64. Am J Reprod Immunol. 2008 Mar;59(3):212-24 [PMID: 18201283]
  65. Sci Rep. 2015 Mar 11;5:8988 [PMID: 25758319]
  66. Am J Obstet Gynecol. 2012 Mar;206(3):208.e1-7 [PMID: 22285171]
  67. Am J Obstet Gynecol. 2017 Sep;217(3):356.e1-356.e18 [PMID: 28549981]
  68. Nat Rev Immunol. 2010 Feb;10(2):131-44 [PMID: 20098461]
  69. J Clin Microbiol. 1994 Jan;32(1):176-86 [PMID: 8126176]
  70. N Engl J Med. 1995 Dec 28;333(26):1737-42 [PMID: 7491137]
  71. J Immunol. 2007 Jul 1;179(1):566-77 [PMID: 17579078]
  72. Semin Reprod Med. 2007 Jan;25(1):69-79 [PMID: 17205425]
  73. PLoS One. 2014 May 07;9(5):e96659 [PMID: 24805362]
  74. Nat Med. 1997 Jan;3(1):42-7 [PMID: 8986739]
  75. Genome Res. 2009 Dec;19(12):2317-23 [PMID: 19819907]
  76. Sex Transm Infect. 2013 Sep;89(6):460-6 [PMID: 23903808]
  77. J Clin Microbiol. 2007 Oct;45(10):3270-6 [PMID: 17687006]
  78. J Infect Dis. 2014 Jun 15;209(12):1989-99 [PMID: 24403560]
  79. Biol Reprod. 2009 Dec;81(6):1226-32 [PMID: 19684330]
  80. PLoS One. 2010 Aug 12;5(8):e12078 [PMID: 20711427]
  81. Lancet. 2008 Jan 5;371(9606):75-84 [PMID: 18177778]
  82. Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):11060-5 [PMID: 26283357]
  83. Cell. 1997 Feb 7;88(3):417-26 [PMID: 9039268]
  84. mBio. 2013 Aug 06;4(4): [PMID: 23919998]

Grants

  1. P30 CA016520/NCI NIH HHS

Word Cloud

Created with Highcharts 10.0.0epithelialcervicalCVbarriermicrobiotaPTBeffectsassociatedfunctionmiRNAsincreasedmiRNACervicovaginaldiseasewomenpregnantpretermbirthassociationsregulatingspacealtermitigatesLPSEctocervicalendocervicalbacteria-freesupernatantspermeabilityadherensjunctionproteinsinflammatorymediatorsexposureexpression-inducedevidenceinflammationCervicalLactobacillusvaginalhealthnon-pregnantRecentstudiessuggestspecificmicrobesadverseoutcomesdemonstratedmechanismsremainunclearcontainspostulatecaninvestigatedbiologicalmolecularepigeneticdeterminedwhetherlipopolysaccharidepossiblemechanismriskcellstreatedalonecombinedusedmeasurecellSolublecadherinLuminexcytokine/chemokinepanelrevealedproinflammatorythreediversealteredcervical-microbial-inflammatory-associatedmitigateddisruptionreversed-mediatedincreasecolonizationC57/B6mouseresulted100%findingsdemonstrateimmuneresponsesexpressionsresultsprovideconfersprotectionmitigatingLPS-remodelingstudyprovidesplaysrolealteringinitiatingThustargetingand/orepitheliummaypotentialtherapeuticstrategypreventCommonMicrobialSupernatantsAlterEpithelialFunction:MechanismsContributesHealthGardnerellavaginaliscrispatusinerscervix

Similar Articles

Cited By