Binding studies based on ultrafast affinity extraction and single- or two-column systems: Interactions of second- and third-generation sulfonylurea drugs with normal or glycated human serum albumin.

Bao Yang, Xiwei Zheng, David S Hage
Author Information
  1. Bao Yang: Chemistry Department, University of Nebraska, Lincoln, NE 68588-0304, USA.
  2. Xiwei Zheng: Chemistry Department, University of Nebraska, Lincoln, NE 68588-0304, USA.
  3. David S Hage: Chemistry Department, University of Nebraska, Lincoln, NE 68588-0304, USA. Electronic address: dhage1@unl.edu.

Abstract

Ultrafast affinity extraction was evaluated and used with microcolumns containing human serum albumin (HSA) to measure the global affinity constants and dissociation rate constants for several second- and third-generation sulfonylurea drugs with solution-phase normal HSA or glycated HSA. Glibenclamide, glimepiride and glipizide were used as model drugs for this work. Both single- and two-column systems were considered for the analysis of global affinities for the model drugs. These methods were optimized with respect to the flow rates, column sizes and sample residence times that were employed with each drug for ultrafast affinity extraction. Data acquired with single-column systems were further utilized to estimate the dissociation rate constants for normal HSA and glycated HSA with the given drugs. The binding constants obtained by the single- and two-column systems showed good agreement with each other and with values obtained from the literature. Use of a single-column system indicated that levels of glycation found in controlled or advanced diabetes resulted in a 18-44% decrease in the overall binding strength of the model drugs with HSA. Although the two-column system allowed work with smaller free drug fractions and clinically-relevant drug/protein concentrations, the single-column system required less protein, provided better precision, and was easier to use in binding studies.

Keywords

References

  1. Drug Test Anal. 2014 Apr;6(4):308-16 [PMID: 23881890]
  2. Anal Chem. 2015 Nov 17;87(22):11187-94 [PMID: 26484387]
  3. Methods. 2018 Aug 15;146:46-57 [PMID: 29510250]
  4. Anal Chem. 2014 Jul 1;86(13):6454-60 [PMID: 24911267]
  5. Food Chem. 2019 Jan 1;270:257-263 [PMID: 30174044]
  6. Anal Bioanal Chem. 2015 Jul;407(18):5309-21 [PMID: 25912461]
  7. Mol Pharmacol. 1976 Nov;12(6):1052-61 [PMID: 1004490]
  8. J Chromatogr A. 2012 Nov 23;1265:114-22 [PMID: 23092871]
  9. Arch Med Sci. 2015 Aug 12;11(4):840-8 [PMID: 26322096]
  10. J Chromatogr A. 2010 Apr 23;1217(17):2796-803 [PMID: 20227701]
  11. Am J Med. 2013 Sep;126(9 Suppl 1):S2-9 [PMID: 23953075]
  12. Diabetologia. 1999 Aug;42(8):903-19 [PMID: 10491749]
  13. Biochem Pharmacol. 1984 Oct 1;33(19):2967-71 [PMID: 6487349]
  14. Anal Bioanal Chem. 2013 Jul;405(17):5833-41 [PMID: 23657448]
  15. Diabetes Care. 2004 May;27(5):1047-53 [PMID: 15111519]
  16. J Pharm Biomed Anal. 2011 Jan 25;54(2):426-32 [PMID: 20880646]
  17. Anal Chem. 2013 May 7;85(9):4453-60 [PMID: 23544441]
  18. Curr Drug Metab. 2014 Jan;15(1):23-9 [PMID: 24328692]
  19. Clin Chim Acta. 2013 Oct 21;425:64-76 [PMID: 23891854]
  20. Ann Emerg Med. 2001 Jul;38(1):68-78 [PMID: 11423816]
  21. J Clin Monit Comput. 1999 Dec;15(7-8):529-44 [PMID: 12578052]
  22. J Chromatogr A. 2015 Aug 21;1408:133-44 [PMID: 26189669]
  23. Oman Med J. 2012 Jul;27(4):269-73 [PMID: 23071876]
  24. J Chromatogr A. 2015 Oct 16;1416:112-20 [PMID: 26381571]
  25. J Chromatogr B Analyt Technol Biomed Life Sci. 2010 Oct 15;878(28):2775-81 [PMID: 20829128]
  26. J Biol Chem. 1983 May 25;258(10):6142-6 [PMID: 6853480]
  27. Integr Biol (Camb). 2012 May;4(5):502-7 [PMID: 22418826]
  28. Chirality. 2006 Sep;18(9):667-79 [PMID: 16823814]
  29. J Diabetes Sci Technol. 2008 Nov;2(6):1114-21 [PMID: 19885300]
  30. Analyst. 2013 Nov 7;138(21):6262-5 [PMID: 23979112]
  31. Rev Anal Chem. 2014 Aug;33(2):79-94 [PMID: 26526139]
  32. J Chromatogr A. 2014 Dec 5;1371:82-9 [PMID: 25456590]
  33. J Pharm Biomed Anal. 2010 Nov 2;53(3):811-8 [PMID: 20537832]
  34. Biochem Biophys Res Commun. 2005 Aug 26;334(2):481-6 [PMID: 16004963]
  35. J Chromatogr B Analyt Technol Biomed Life Sci. 2010 Jun 1;878(19):1590-8 [PMID: 20435530]
  36. Biopharm Drug Dispos. 1997 Dec;18(9):791-801 [PMID: 9429743]

Grants

  1. R01 DK069629/NIDDK NIH HHS

MeSH Term

Chromatography, Affinity
Diabetes Mellitus
Glycosylation
Humans
Hypoglycemic Agents
Protein Binding
Serum Albumin, Human
Sulfonylurea Compounds

Chemicals

Hypoglycemic Agents
Sulfonylurea Compounds
Serum Albumin, Human

Word Cloud

Created with Highcharts 10.0.0drugsHSAaffinityextractionconstantstwo-columnbindingserumalbuminnormalglycatedmodelsingle-systemssingle-columnsystemUltrafastusedhumanglobaldissociationratesecond-third-generationsulfonylureaworkdrugultrafastobtainedstudiesevaluatedmicrocolumnscontainingmeasureseveralsolution-phaseGlibenclamideglimepirideglipizideconsideredanalysisaffinitiesmethodsoptimizedrespectflowratescolumnsizessampleresidencetimesemployedDataacquiredutilizedestimategivenshowedgoodagreementvaluesliteratureUseindicatedlevelsglycationfoundcontrolledadvanceddiabetesresulted18-44%decreaseoverallstrengthAlthoughallowedsmallerfreefractionsclinically-relevantdrug/proteinconcentrationsrequiredlessproteinprovidedbetterprecisioneasieruseBindingbasedsystems:InteractionsDiabetesDrug-proteinGlycationHumanSulfonylurea

Similar Articles

Cited By