Induction and Recovery of the Viable but Nonculturable State of Hop-Resistance .

Junyan Liu, Yang Deng, Thanapop Soteyome, Yanyan Li, Jianyu Su, Lin Li, Bing Li, Mark E Shirtliff, Zhenbo Xu, Brian M Peters
Author Information
  1. Junyan Liu: School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
  2. Yang Deng: College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China.
  3. Thanapop Soteyome: Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand.
  4. Yanyan Li: Department of Cell Biology, Harvard Medical School, Boston, MA, United States.
  5. Jianyu Su: School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
  6. Lin Li: School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
  7. Bing Li: School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
  8. Mark E Shirtliff: Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, United States.
  9. Zhenbo Xu: School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
  10. Brian M Peters: Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States.

Abstract

is a major hop-resistance bacterium which poses significant challenge for the brewing industry, mainly due to the difficulty or incapability in detection by routine culturing methodology and its beer spoilage ability.This study aimed at investigating the VBNC state of a hop-resistance strain, BM-LB13908. The culturable, total and viable numbers of cells were calculated by MRS agar plate counting, acridine orange direct count (AODC) method and Live/Dead BacLight bacterial viability kit with fluorescence microscope. VBNC formation was induced by 189 ± 5.7 days under low-temperature storage or 27 ± 1.2 subcultures by continuous passage in beer, and VBNC cells induced by both strategies were recovered by adding catalase. In addition, insignificant difference in beer-spoilage ability was found in 3 states of , including logarithmic growing, VBNC and recovered cells. This is the first study on the formation of VBNC state for and beer-spoilage ability of both VBNC and recovered cells, which indicate strain could cause beer spoilage without being detected by routine methodologies. The results derived from this study may support further study on and other hop-resistance bacteria, and guidance on beer spoilage prevention and control, such as improvement for brewers on the microbiological quality control by using the improved culture method with catalase supplementation.

Keywords

References

  1. Int J Food Microbiol. 2003 Dec 31;89(2-3):105-24 [PMID: 14623377]
  2. Curr Microbiol. 2011 Feb;62(2):544-6 [PMID: 20730433]
  3. Appl Environ Microbiol. 2007 Feb;73(4):1349-54 [PMID: 17189433]
  4. Int J Food Microbiol. 2006 Nov 1;112(2):147-52 [PMID: 16876276]
  5. J Food Sci. 2015 Dec;80(12):M2845-52 [PMID: 26489032]
  6. J Appl Microbiol. 2009 Jul;107(1):106-16 [PMID: 19298508]
  7. Int J Food Microbiol. 2015 Aug 3;206:96-101 [PMID: 26001377]
  8. Microb Ecol. 2002 Mar;43(2):250-8 [PMID: 12023732]
  9. Microbiol Res. 2001;156(1):103-6 [PMID: 11372646]
  10. Appl Environ Microbiol. 1977 May;33(5):1225-8 [PMID: 327932]
  11. Appl Environ Microbiol. 2011 Dec;77(23):8295-302 [PMID: 21965401]
  12. Antonie Van Leeuwenhoek. 2013 May;103(5):979-88 [PMID: 23314927]
  13. Appl Environ Microbiol. 2010 Jan;76(1):142-9 [PMID: 19880646]
  14. ACS Appl Mater Interfaces. 2018 Feb 21;10(7):6124-6136 [PMID: 29356496]
  15. FEMS Microbiol Ecol. 2008 Apr;64(1):37-44 [PMID: 18248440]
  16. J Appl Bacteriol. 1992 Apr;72(4):327-34 [PMID: 1517174]
  17. Int J Food Microbiol. 2002 Jun 25;76(3):223-30 [PMID: 12051479]
  18. PLoS One. 2014 Oct 08;9(10):e109792 [PMID: 25296177]
  19. J Appl Microbiol. 2002;93(1):108-16 [PMID: 12067379]
  20. Microb Pathog. 2017 Sep;110:257-261 [PMID: 28668605]
  21. Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9474-5 [PMID: 11504935]
  22. Appl Environ Microbiol. 2003 Nov;69(11):6669-75 [PMID: 14602627]
  23. J Microbiol Methods. 2011 May;85(2):114-8 [PMID: 21329738]
  24. Appl Environ Microbiol. 2007 May;73(10):3283-90 [PMID: 17384309]
  25. J Microbiol. 2005 Feb;43 Spec No:93-100 [PMID: 15765062]
  26. Biomed Res Int. 2013;2013:907170 [PMID: 23509799]
  27. FEMS Microbiol Ecol. 2004 Nov 1;50(3):133-42 [PMID: 19712354]
  28. Microbiology. 1998 Jan;144 ( Pt 1):1-3 [PMID: 9467894]
  29. Microbiologyopen. 2017 Oct;6(5): [PMID: 28685978]
  30. Microb Pathog. 2017 Jun;107:219-224 [PMID: 28377233]
  31. Res Microbiol. 2006 Jun;157(5):417-24 [PMID: 16488576]
  32. Res Microbiol. 2017 Apr;168(3):188-193 [PMID: 27884785]
  33. Microb Pathog. 2017 Feb;103:80-86 [PMID: 27894963]
  34. J Appl Microbiol. 2008 May;104(5):1458-70 [PMID: 18070034]

Word Cloud

Created with Highcharts 10.0.0VBNCbeercellshop-resistancespoilagestudyabilitystaterecoveredroutinestrainmethodformationinduced±catalasebeer-spoilagecontrolmajorbacteriumposessignificantchallengebrewingindustrymainlyduedifficultyincapabilitydetectionculturingmethodologyThisaimedinvestigatingBM-LB13908culturabletotalviablenumberscalculatedMRSagarplatecountingacridineorangedirectcountAODCLive/DeadBacLightbacterialviabilitykitfluorescencemicroscope18957dayslow-temperaturestorage2712subculturescontinuouspassagestrategiesaddingadditioninsignificantdifferencefound3statesincludinglogarithmicgrowingfirstindicatecausewithoutdetectedmethodologiesresultsderivedmaysupportbacteriaguidancepreventionimprovementbrewersmicrobiologicalqualityusingimprovedculturesupplementationInductionRecoveryViableNonculturableStateHop-ResistanceLactobacillusbrevisrecovery

Similar Articles

Cited By