Recent decline in extratropical lower stratospheric ozone attributed to circulation changes.

Krzysztof Wargan, Clara Orbe, Steven Pawson, Jerald R Ziemke, Luke D Oman, Mark A Olsen, Lawrence Coy, K Emma Knowland
Author Information
  1. Krzysztof Wargan: Science Systems and Applications Inc., Lanham, Maryland, USA.
  2. Clara Orbe: Code 611, NASA Goddard Institute for Space Studies, New York, NY, USA.
  3. Steven Pawson: Global Modeling and Assimilation Office, Code 610.1, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
  4. Jerald R Ziemke: Goddard Earth Science Technology & Research (GESTAR) Morgan State University, Baltimore, MD USA.
  5. Luke D Oman: Atmospheric Chemistry and Dynamics Laboratory, Code 614, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
  6. Mark A Olsen: Goddard Earth Science Technology & Research (GESTAR) Morgan State University, Baltimore, MD USA.
  7. Lawrence Coy: Science Systems and Applications Inc., Lanham, Maryland, USA.
  8. K Emma Knowland: Goddard Earth Science Technology & Research (GESTAR), Universities Space Research Association (USRA), Columbia, MD USA.

Abstract

1998-2016 ozone trends in the lower stratosphere (LS) are examined using the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) and related NASA products. After removing biases resulting from step-changes in the MERRA-2 ozone observations, a discernible negative trend of -1.67±0.54 Dobson units per decade (DU/decade) is found in the 10-km layer above the tropopause between 20°N and 60°N. A weaker but statistically significant trend of -1.17±0.33 DU/decade exists between 50°S and 20°S. In the Tropics, a positive trend is seen in a 5-km layer above the tropopause. Analysis of an idealized tracer in a model simulation constrained by MERRA-2 meteorological fields provides strong evidence that these trends are driven by enhanced isentropic transport between the tropical (20°S-20°N) and extratropical LS in the past two decades. This is the first time that a reanalysis dataset has been used to detect and attribute trends in lower stratospheric ozone.

References

  1. J Clim. 2017 Apr;30(No 8):2961-2988 [PMID: 29527096]
  2. J Geophys Res Atmos. 2018 Mar 27;123(6):3243-3268 [PMID: 33154879]
  3. J Clim. 2017 Jun 20;Volume 30(Iss 13):5419-5454 [PMID: 32020988]
  4. Atmos Chem Phys. 2017 Oct;17(20):12743-12778 [PMID: 32714380]
  5. J Adv Model Earth Syst. 2017 Dec;9(8):3019-3044 [PMID: 29497478]
  6. Atmos Meas Tech. 2016;9(6):2497-2534 [PMID: 29743958]
  7. Nat Geosci. 2014;7:768-776 [PMID: 29263751]

Grants

  1. /Goddard Space Flight Center NASA
  2. N-999999/Intramural NASA

Word Cloud

Created with Highcharts 10.0.0ozonetrendslowerMERRA-2trendLSAnalysis-1DU/decadelayertropopauseextratropicalstratospheric1998-2016stratosphereexaminedusingModern-EraRetrospectiveResearchApplicationsVersion2relatedNASAproductsremovingbiasesresultingstep-changesobservationsdiscerniblenegative67±054Dobsonunitsperdecadefound10-km20°N60°Nweakerstatisticallysignificant17±033exists50°S20°STropicspositiveseen5-kmidealizedtracermodelsimulationconstrainedmeteorologicalfieldsprovidesstrongevidencedrivenenhancedisentropictransporttropical20°S-20°NpasttwodecadesfirsttimereanalysisdatasetuseddetectattributeRecentdeclineattributedcirculationchanges

Similar Articles

Cited By