Specialized neural dynamics for verbal and tonal memory: fMRI evidence in congenital amusia.

Philippe Albouy, Isabelle Peretz, Patrick Bermudez, Robert J Zatorre, Barbara Tillmann, Anne Caclin
Author Information
  1. Philippe Albouy: Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics Team, CNRS, UMR5292, INSERM, U1028, Lyon, France. ORCID
  2. Isabelle Peretz: International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Quebec, Canada.
  3. Patrick Bermudez: Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
  4. Robert J Zatorre: Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
  5. Barbara Tillmann: Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics Team, CNRS, UMR5292, INSERM, U1028, Lyon, France.
  6. Anne Caclin: Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, CNRS, UMR5292, INSERM, U1028, Lyon, France.

Abstract

Behavioral and neuropsychological studies have suggested that tonal and verbal short-term memory are supported by specialized neural networks. To date however, neuroimaging investigations have failed to confirm this hypothesis. In this study, we investigated the hypothesis of distinct neural resources for tonal and verbal memory by comparing typical nonmusician listeners to individuals with congenital amusia, who exhibit pitch memory impairments with preserved verbal memory. During fMRI, amusics and matched controls performed delayed-match-to-sample tasks with tones and words and perceptual control tasks with the same stimuli. For tonal maintenance, amusics showed decreased activity in the right auditory cortex, inferior frontal gyrus (IFG) and dorso-lateral-prefrontal cortex (DLPFC). Moreover, they exhibited reduced right-lateralized functional connectivity between the auditory cortex and the IFG during tonal encoding and between the IFG and the DLPFC during tonal maintenance. In contrasts, amusics showed no difference compared with the controls for verbal memory, with activation in the left IFG and left fronto-temporal connectivity. Critically, we observed a group-by-material interaction in right fronto-temporal regions: while amusics recruited these regions less strongly for tonal memory than verbal memory, control participants showed the reversed pattern (tonal > verbal). By benefitting from the rare condition of amusia, our findings suggest specialized cortical systems for tonal and verbal short-term memory in the human brain.

Keywords

References

  1. Mem Cognit. 2007 Jun;35(4):640-50 [PMID: 17848022]
  2. Annu Rev Psychol. 2005;56:89-114 [PMID: 15709930]
  3. Nature. 1993 Mar 25;362(6418):342-5 [PMID: 8455719]
  4. Neuron. 2005 Nov 23;48(4):687-97 [PMID: 16301183]
  5. Brain Cogn. 2017 Apr;113:10-22 [PMID: 28088063]
  6. Cereb Cortex. 2011 Feb;21(2):292-9 [PMID: 20494966]
  7. Brain. 2002 Feb;125(Pt 2):238-51 [PMID: 11844725]
  8. Ann N Y Acad Sci. 2012 Apr;1252:229-36 [PMID: 22524364]
  9. Neuroimage. 2004 Jun;22(2):562-73 [PMID: 15193584]
  10. Ann N Y Acad Sci. 2018 May 9;: [PMID: 29744897]
  11. Brain Cogn. 2009 Dec;71(3):259-64 [PMID: 19762140]
  12. Neuroreport. 1999 Dec 16;10(18):3825-30 [PMID: 10716217]
  13. Ann N Y Acad Sci. 2009 Jul;1169:270-2 [PMID: 19673791]
  14. Prog Brain Res. 2008;169:323-38 [PMID: 18394484]
  15. Hum Brain Mapp. 2019 Feb 15;40(3):855-867 [PMID: 30381866]
  16. Mem Cognit. 1992 May;20(3):314-20 [PMID: 1508056]
  17. Brain. 2006 Oct;129(Pt 10):2562-70 [PMID: 16931534]
  18. Behav Brain Res. 2015 Nov 1;294:141-8 [PMID: 26254878]
  19. J Exp Psychol Gen. 1999 Sep;128(3):309-331 [PMID: 10513398]
  20. Science. 1970 Jun 26;168(3939):1604-5 [PMID: 5420547]
  21. Philos Trans R Soc Lond B Biol Sci. 2007 May 29;362(1481):761-72 [PMID: 17400538]
  22. Brain. 2004 Apr;127(Pt 4):801-10 [PMID: 14985262]
  23. Curr Biol. 2010 Feb 23;20(4):R136-40 [PMID: 20178752]
  24. J Neurosci. 2016 Mar 9;36(10):2986-94 [PMID: 26961952]
  25. J Cogn Neurosci. 2008 May;20(5):762-78 [PMID: 18201133]
  26. Handb Clin Neurol. 2015;129:589-605 [PMID: 25726292]
  27. Adv Cogn Psychol. 2010 Apr 26;6:15-22 [PMID: 20689638]
  28. Brain. 2006 Oct;129(Pt 10):2533-53 [PMID: 16845129]
  29. Brain Res. 2013 Nov 6;1537:224-32 [PMID: 24041778]
  30. Ann N Y Acad Sci. 2018 Apr 29;: [PMID: 29707781]
  31. Neuroimage. 2013 Jul 15;75:27-35 [PMID: 23470983]
  32. Memory. 2010 Aug;18(6):657-69 [PMID: 20706954]
  33. J Neurosci. 2016 Apr 20;36(16):4492-505 [PMID: 27098693]
  34. Trends Cogn Sci. 2016 Nov;20(11):857-867 [PMID: 27692992]
  35. J Neurosci. 1996 Jan 15;16(2):808-22 [PMID: 8551361]
  36. Proc Biol Sci. 1991 Dec 23;246(1317):293-8 [PMID: 1686095]
  37. J Acoust Soc Am. 1996 Aug;100(2 Pt 1):1132-40 [PMID: 8759966]
  38. Hum Brain Mapp. 2011 May;32(5):771-83 [PMID: 20533560]
  39. Sci Rep. 2016 Jan 06;6:18861 [PMID: 26732511]
  40. Ann N Y Acad Sci. 2003 Nov;999:58-75 [PMID: 14681118]
  41. Exp Brain Res. 2000 Jul;133(1):33-43 [PMID: 10933208]
  42. J Neurosci. 2007 Nov 21;27(47):13028-32 [PMID: 18032676]
  43. J Neurosci. 2009 Aug 19;29(33):10215-20 [PMID: 19692596]
  44. Neuroimage. 2003 Aug;19(4):1417-26 [PMID: 12948699]
  45. Brain Res. 2016 Jun 1;1640(Pt B):251-63 [PMID: 26505915]
  46. J Neurophysiol. 2016 Jul 1;116(1):88-97 [PMID: 27009161]
  47. Curr Opin Neurobiol. 1994 Apr;4(2):207-11 [PMID: 8038578]
  48. Cereb Cortex. 1998 Sep;8(6):534-42 [PMID: 9758216]
  49. Neuroimage. 1999 Oct;10(4):417-29 [PMID: 10493900]
  50. Hum Brain Mapp. 2009 Mar;30(3):859-73 [PMID: 18330870]
  51. Neuroimage. 2003 Jul;19(3):797-809 [PMID: 12880808]
  52. Trends Cogn Sci. 2003 Sep;7(9):415-423 [PMID: 12963473]
  53. Brain. 2013 May;136(Pt 5):1639-61 [PMID: 23616587]
  54. Cortex. 2007 Jan;43(1):1-4 [PMID: 17334203]
  55. Restor Neurol Neurosci. 2007;25(3-4):323-34 [PMID: 17943009]
  56. J Neurosci. 1994 Apr;14(4):1908-19 [PMID: 8158246]
  57. Front Hum Neurosci. 2015 Feb 04;9:20 [PMID: 25698955]
  58. Neuropsychologia. 1992 Sep;30(9):815-26 [PMID: 1407496]
  59. Q J Exp Psychol (Hove). 2011 Apr;64(4):625-38 [PMID: 21409740]
  60. Neuron. 2017 Apr 5;94(1):193-206.e5 [PMID: 28343866]
  61. Can J Psychol. 1975 Jun;29(2):87-105 [PMID: 1182608]
  62. J Magn Reson Imaging. 2006 Jun;23(6):827-39 [PMID: 16649196]
  63. Cereb Cortex. 2010 Jun;20(6):1350-9 [PMID: 19789184]
  64. Mem Cognit. 2010 Mar;38(2):163-75 [PMID: 20173189]
  65. Neuropsychologia. 2017 May;99:213-224 [PMID: 28315696]
  66. J Cogn Neurosci. 2003 Jul 1;15(5):673-82 [PMID: 12965041]

Grants

  1. ANR-10-LABX-0060/Agence Nationale de la Recherche
  2. ANR-11-BSH2-001-01/Agence Nationale de la Recherche
  3. ANR-11-IDEX-0007/Agence Nationale de la Recherche
  4. ANR-11-LABX-0042/Agence Nationale de la Recherche

MeSH Term

Adult
Auditory Perceptual Disorders
Brain
Brain Mapping
Female
Humans
Magnetic Resonance Imaging
Male
Memory, Short-Term
Pitch Perception

Word Cloud

Created with Highcharts 10.0.0tonalmemoryverbalamusicsIFGneuralamusiashowedauditorycortexshort-termspecializednetworkshypothesiscongenitalfMRIcontrolstaskscontrolmaintenancerightinferiorfrontalgyrusDLPFCconnectivityleftfronto-temporalbrainBehavioralneuropsychologicalstudiessuggestedsupporteddatehoweverneuroimaginginvestigationsfailedconfirmstudyinvestigateddistinctresourcescomparingtypicalnonmusicianlistenersindividualsexhibitpitchimpairmentspreservedmatchedperformeddelayed-match-to-sampletoneswordsperceptualstimulidecreasedactivitydorso-lateral-prefrontalMoreoverexhibitedreducedright-lateralizedfunctionalencodingcontrastsdifferencecomparedactivationCriticallyobservedgroup-by-materialinteractionregions:recruitedregionslessstronglyparticipantsreversedpattern>benefittingrareconditionfindingssuggestcorticalsystemshumanSpecializeddynamicsmemory:evidencetonedeafness

Similar Articles

Cited By