Salivary gland cell aggregates are derived from self-organization of acinar lineage cells.

Jomy J Varghese, M Eva Hansen, Azmeer Sharipol, Matthew H Ingalls, Martha A Ormanoski, Shawn D Newlands, Catherine E Ovitt, Danielle S W Benoit
Author Information
  1. Jomy J Varghese: Department of Biomedical Engineering, University of Rochester, United States.
  2. M Eva Hansen: Department of Biomedical Engineering, University of Rochester, United States.
  3. Azmeer Sharipol: Department of Biomedical Engineering, University of Rochester, United States.
  4. Matthew H Ingalls: Department of Biomedical Genetics, University of Rochester, United States.
  5. Martha A Ormanoski: Department of Biomedical Engineering, Cornell University, United States.
  6. Shawn D Newlands: Department of Otolaryngology, University of Rochester, United States; Wilmot Cancer Institute, University of Rochester, United States; Department of Neuroscience, University of Rochester, United States.
  7. Catherine E Ovitt: Department of Biomedical Genetics, University of Rochester, United States; Center for Oral Biology, University of Rochester, United States. Electronic address: catherine_ovitt@urmc.rochester.edu.
  8. Danielle S W Benoit: Department of Biomedical Engineering, University of Rochester, United States; Department of Biomedical Genetics, University of Rochester, United States; Center for Oral Biology, University of Rochester, United States; Center for Musculoskeletal Research, University of Rochester, United States; Department of Orthopaedics, University of Rochester, United States; Department of Chemical Engineering, University of Rochester, United States. Electronic address: benoit@bme.rochester.edu.

Abstract

OBJECTIVE: The objective of this study was to characterize the mechanism by which salivary gland cells (SGC) aggregate in vitro.
DESIGN: Timelapse microscopy was utilized to analyze the process of salivary gland aggregate formation using both primary murine and human salivary gland cells. The role of cell density, proliferation, extracellular calcium, and secretory acinar cells in aggregate formation was investigated. Finally, the ability of cells isolated from irradiated glands to form aggregates was also evaluated.
RESULTS: Salivary gland cell self-organization rather than proliferation was the predominant mechanism of aggregate formation in both primary mouse and human salivary gland cultures. Aggregation was found to require extracellular calcium while acinar lineage cells account for ∼80% of the total aggregate cell population. Finally, aggregation was not impaired by irradiation.
CONCLUSIONS: The data reveal that aggregation occurs as a result of heterogeneous salivary gland cell self-organization rather than from stem cell proliferation and differentiation, contradicting previous dogma. These results suggest a re-evaluation of aggregate formation as a criterion defining salivary gland stem cells.

Keywords

References

  1. Radiother Oncol. 2013 Sep;108(3):458-63 [PMID: 23769181]
  2. J Vis Exp. 2011 Feb 08;(48): [PMID: 21339725]
  3. Oral Dis. 2018 Nov;24(8):1477-1483 [PMID: 29923277]
  4. Radiother Oncol. 2011 Jun;99(3):367-72 [PMID: 21719134]
  5. Sci Transl Med. 2015 Sep 16;7(305):305ra147 [PMID: 26378247]
  6. Skin Res Technol. 2010 Aug;16(3):378-84 [PMID: 20637008]
  7. Ann Diagn Pathol. 2016 Oct;24:62-7 [PMID: 27649957]
  8. Tissue Eng Part A. 2008 Nov;14(11):1915-26 [PMID: 18721074]
  9. Cancer Sci. 2017 Mar;108(3):283-289 [PMID: 28064442]
  10. PLoS One. 2013 Jun 04;8(6):e64388 [PMID: 23750209]
  11. Int J Cancer. 2010 Jul 1;127(1):1-8 [PMID: 20143388]
  12. Tissue Eng Part A. 2015 Jun;21(11-12):1733-51 [PMID: 25762214]
  13. J Membr Biol. 2001 Jun 1;181(3):185-93 [PMID: 11420605]
  14. J Cell Physiol. 2011 Nov;226(11):3076-85 [PMID: 21302307]
  15. Dev Cell. 2015 Apr 20;33(2):231-7 [PMID: 25843887]
  16. PLoS One. 2008 Apr 30;3(4):e2063 [PMID: 18446241]
  17. PLoS One. 2013 Oct 04;8(10):e77281 [PMID: 24124614]
  18. Nat Methods. 2006 Oct;3(10):801-6 [PMID: 16990812]
  19. Stem Cell Res. 2012 May;8(3):379-87 [PMID: 22370009]
  20. Glia. 2006 Jul;54(1):21-34 [PMID: 16652340]
  21. Stem Cells. 2013 Apr;31(4):613-9 [PMID: 23335219]
  22. Stem Cell Reports. 2016 Jan 12;6(1):150-62 [PMID: 26724906]
  23. Dev Cell. 2006 Jan;10(1):21-31 [PMID: 16399075]
  24. Stem Cells. 2008 Oct;26(10):2595-601 [PMID: 18669914]
  25. Oral Dis. 2013 Apr;19(3):236-44 [PMID: 22805753]
  26. Science. 1992 Mar 27;255(5052):1707-10 [PMID: 1553558]
  27. BMC Gastroenterol. 2011 Jun 14;11:71 [PMID: 21669008]
  28. Cell Stem Cell. 2011 May 6;8(5):486-98 [PMID: 21549325]
  29. Acta Med Okayama. 1979 Feb;33(1):1-4 [PMID: 155977]
  30. Eur J Morphol. 1998 Aug;36 Suppl:31-4 [PMID: 9825889]
  31. Tissue Eng. 2007 Apr;13(4):721-35 [PMID: 17341161]
  32. Am J Physiol. 1992 Dec;263(6 Pt 1):G823-37 [PMID: 1476190]
  33. Cancer Cell Int. 2015 Oct 09;15:95 [PMID: 26457068]
  34. Radiother Oncol. 2009 Sep;92(3):466-71 [PMID: 19625095]
  35. Tsitologiia. 2011;53(2):129-34 [PMID: 21516819]
  36. Radiother Oncol. 2015 Sep;116(3):443-8 [PMID: 26138058]
  37. Tissue Eng. 2005 Jan-Feb;11(1-2):172-81 [PMID: 15738672]
  38. PLoS One. 2012;7(2):e31864 [PMID: 22359637]
  39. J Physiol. 2016 Jun 1;594(11):2813-24 [PMID: 26592972]
  40. Acta Biomater. 2017 Mar 1;50:437-449 [PMID: 28039063]
  41. Biotech Histochem. 2009 Dec;84(6):253-60 [PMID: 19572222]
  42. Arch Oral Biol. 2017 Sep;81:141-150 [PMID: 28528309]
  43. Genes Dev. 2015 Jun 15;29(12):1203-17 [PMID: 26109046]

Grants

  1. UG3 DE027695/NIDCR NIH HHS
  2. F30 CA206296/NCI NIH HHS
  3. UH3 DE027695/NIDCR NIH HHS
  4. R56 DE025098/NIDCR NIH HHS
  5. T90 DE021985/NIDCR NIH HHS

MeSH Term

Acinar Cells
Animals
Calcium
Cell Count
Cell Differentiation
Cell Proliferation
Cells, Cultured
Humans
Mice
Salivary Glands

Chemicals

Calcium

Word Cloud

Created with Highcharts 10.0.0glandcellssalivaryaggregatecellformationproliferationacinarSalivaryself-organizationmechanismprimaryhumanextracellularcalciumFinallyaggregatesratherlineageaggregationstemOBJECTIVE:objectivestudycharacterizeSGCvitroDESIGN:TimelapsemicroscopyutilizedanalyzeprocessusingmurineroledensitysecretoryinvestigatedabilityisolatedirradiatedglandsformalsoevaluatedRESULTS:predominantmouseculturesAggregationfoundrequireaccount∼80%totalpopulationimpairedirradiationCONCLUSIONS:datarevealoccursresultheterogeneousdifferentiationcontradictingpreviousdogmaresultssuggestre-evaluationcriteriondefiningderivedAcinarAggregatesRadiationdamage

Similar Articles

Cited By