Diapause-associated changes in the lipid and metabolite profiles of the Asian tiger mosquito, .

Zachary A Batz, Peter A Armbruster
Author Information
  1. Zachary A Batz: Department of Biology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, USA zab7@georgetown.edu. ORCID
  2. Peter A Armbruster: Department of Biology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, USA.

Abstract

Diapause is an alternative life-history strategy that allows organisms to enter developmental arrest in anticipation of unfavorable conditions. Diapause is widespread among insects and plays a key role in enhancing overwinter survival as well as defining the seasonal and geographic distributions of populations. Next-generation sequencing has greatly advanced our understanding of the transcriptional basis for this crucial adaptation but less is known about the regulation of embryonic diapause physiology at the metabolite level. Here, we characterized the lipid and metabolite profiles of embryonic diapause in the Asian tiger mosquito, We used an untargeted approach to capture the relative abundance of 250 lipids and 241 metabolites. We observed adjustments associated with increased energy storage, including an accumulation of lipids, the formation of larger lipid droplets and increased lipogenesis, as well as metabolite shifts suggesting reduced energy utilization. We also found changes in neuroregulatory- and insulin-associated metabolites with potential roles in diapause regulation Finally, we detected a group of unidentified, diapause-specific metabolites which have physical properties similar to those of steroids/steroid derivatives and may be associated with the ecdysteroidal regulation of embryonic diapause in Together, these results deepen our understanding of the metabolic regulation of embryonic diapause and identify key targets for future investigations.

Keywords

References

  1. Nat Methods. 2013 Aug;10(8):755-8 [PMID: 23817071]
  2. Worm. 2013 Jan 1;2(1):e21457 [PMID: 24058856]
  3. J Insect Physiol. 1974 Sep;20(9):1833-47 [PMID: 4414023]
  4. Annu Rev Physiol. 1995;57:19-42 [PMID: 7778864]
  5. Arch Insect Biochem Physiol. 2007 Jun;65(2):85-94 [PMID: 17523171]
  6. Environ Entomol. 2017 Dec 8;46(6):1424-1431 [PMID: 29087475]
  7. Ann N Y Acad Sci. 2004 Nov;1033:1-16 [PMID: 15590999]
  8. Nucleic Acids Res. 2015 Jul 1;43(W1):W251-7 [PMID: 25897128]
  9. J Exp Biol. 2018 Jan 25;221(Pt 2): [PMID: 29180603]
  10. Evolution. 2004 Aug;58(8):1748-62 [PMID: 15446427]
  11. Biochem Biophys Res Commun. 2015 Oct 23;466(3):438-43 [PMID: 26365347]
  12. C R Acad Sci III. 1991;313(5):207-12 [PMID: 1913259]
  13. Insect Biochem Mol Biol. 2015 Aug;63:34-46 [PMID: 26005120]
  14. Proc Natl Acad Sci U S A. 2017 Aug 8;114(32):8532-8537 [PMID: 28720705]
  15. J Insect Physiol. 1997 Oct;43(10):897-903 [PMID: 12770459]
  16. Anal Chem. 2011 Mar 15;83(6):2152-61 [PMID: 21329365]
  17. Proc Natl Acad Sci U S A. 2008 May 6;105(18):6777-81 [PMID: 18448677]
  18. PLoS One. 2015 Jun 19;10(6):e0130499 [PMID: 26090954]
  19. PLoS One. 2013;8(1):e54025 [PMID: 23349779]
  20. Can J Biochem Physiol. 1959 Aug;37(8):911-7 [PMID: 13671378]
  21. Annu Rev Entomol. 2002;47:93-122 [PMID: 11729070]
  22. J Med Entomol. 1974 Jun 15;11(2):223-5 [PMID: 4851698]
  23. J Exp Biol. 2013 Nov 1;216(Pt 21):4082-90 [PMID: 23913949]
  24. J Insect Physiol. 1997 Nov;44(1):87-94 [PMID: 12770447]
  25. BMC Genomics. 2015 Sep 21;16:720 [PMID: 26391666]
  26. BMC Genomics. 2011 Dec 20;12:619 [PMID: 22185595]
  27. Insect Mol Biol. 2017 Dec;26(6):721-733 [PMID: 28776797]
  28. J Insect Physiol. 2007 Aug;53(8):760-73 [PMID: 17532002]
  29. BMC Genomics. 2006 Jun 08;7:142 [PMID: 16762068]
  30. J Cell Biol. 2014 Mar 3;204(5):635-46 [PMID: 24590170]
  31. PLoS One. 2012;7(2):e32606 [PMID: 22389713]
  32. J Cell Physiol. 2012 Aug;227(8):2975-81 [PMID: 22034100]
  33. J Med Entomol. 1994 Mar;31(2):192-201 [PMID: 8189409]
  34. Nat Protoc. 2011 Jun;6(6):743-60 [PMID: 21637195]
  35. Arch Insect Biochem Physiol. 1996;32(3-4):449-66 [PMID: 8756306]
  36. Anal Chem. 2017 Oct 3;89(19):10397-10406 [PMID: 28914531]
  37. PLoS One. 2016 Apr 29;11(4):e0154892 [PMID: 27128578]
  38. J Electron Microsc (Tokyo). 2011;60 Suppl 1:S101-16 [PMID: 21844583]
  39. J Exp Biol. 2012 Aug 15;215(Pt 16):2891-7 [PMID: 22837463]
  40. Mol Ecol Resour. 2010 Jul;10(4):583-93 [PMID: 21565063]
  41. Insect Biochem Mol Biol. 2000 Aug-Sep;30(8-9):617-44 [PMID: 10876106]
  42. Proc Biol Sci. 2013 Mar 20;280(1759):20130143 [PMID: 23516243]
  43. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W71-7 [PMID: 20457745]
  44. Annu Rev Entomol. 2014;59:73-93 [PMID: 24160427]
  45. PLoS One. 2014 Jun 13;9(6):e99948 [PMID: 24926789]
  46. Peptides. 2002 Apr;23(4):807-16 [PMID: 11897402]
  47. J Am Mosq Control Assoc Suppl. 1988 Dec;1:1-39 [PMID: 3068349]
  48. Bioinformatics. 2010 Sep 15;26(18):2342-4 [PMID: 20628077]
  49. Annu Rev Entomol. 2011;56:103-21 [PMID: 20690828]
  50. BMC Genomics. 2013 Nov 01;14:751 [PMID: 24180224]
  51. J Med Entomol. 2002 Jul;39(4):699-704 [PMID: 12144308]
  52. J Comp Physiol B. 2007 Oct;177(7):753-63 [PMID: 17576567]
  53. Anal Bioanal Chem. 2012 Jun;403(6):1523-48 [PMID: 22576654]
  54. Trends Endocrinol Metab. 2005 May-Jun;16(4):183-9 [PMID: 15860415]
  55. Nucleic Acids Res. 2007 Jan;35(Database issue):D521-6 [PMID: 17202168]
  56. BMC Genomics. 2015 Dec 21;16:1086 [PMID: 26689283]
  57. J Comp Physiol B. 2008 Nov;178(8):917-33 [PMID: 18584182]
  58. Anal Chem. 2016 Jan 5;88(1):524-45 [PMID: 26637011]
  59. Acta Chim Slov. 2015;62(4):761-7 [PMID: 26680702]
  60. J Exp Biol. 2010 Mar 15;213(6):980-94 [PMID: 20190123]
  61. Physiol Genomics. 2012 Aug 1;44(15):764-77 [PMID: 22735925]
  62. Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14909-14 [PMID: 20668242]
  63. Nucleic Acids Res. 2018 Jan 4;46(D1):D608-D617 [PMID: 29140435]
  64. Proc Biol Sci. 2010 Sep 7;277(1694):2683-92 [PMID: 20410035]
  65. J Vis Exp. 2014 May 27;(87): [PMID: 24894601]
  66. J Insect Physiol. 2012 Jul;58(7):966-73 [PMID: 22579567]
  67. Biochem Soc Trans. 2016 Jun 15;44(3):961-71 [PMID: 27284066]
  68. Am Nat. 2012 Apr;179(4):490-500 [PMID: 22437178]
  69. J Sep Sci. 2011 Dec;34(24):3460-9 [PMID: 21972197]
  70. Physiol Rev. 1983 Oct;63(4):1420-80 [PMID: 6361812]
  71. Biochim Biophys Acta. 1997 Sep 4;1348(1-2):79-90 [PMID: 9370319]
  72. PLoS One. 2013 Aug 05;8(8):e71564 [PMID: 23940768]
  73. Annu Rev Entomol. 2010;55:207-25 [PMID: 19725772]
  74. Anal Chem. 2015 Nov 3;87(21):10935-41 [PMID: 26434689]
  75. J Insect Physiol. 2006 Feb;52(2):113-27 [PMID: 16332347]
  76. J Proteome Res. 2012 Feb 3;11(2):1042-53 [PMID: 22149145]
  77. PLoS One. 2017 Jul 12;12(7):e0181033 [PMID: 28704500]
  78. Cell Metab. 2011 Oct 5;14(4):504-15 [PMID: 21982710]
  79. PLoS Negl Trop Dis. 2015 Apr 21;9(4):e0003724 [PMID: 25897664]

Grants

  1. R15 AI111328/NIAID NIH HHS

MeSH Term

Aedes
Animals
Diapause, Insect
Embryo, Nonmammalian
Lipid Metabolism
Metabolome

Word Cloud

Created with Highcharts 10.0.0diapauseregulationembryonicmetabolitelipidmetabolitesDiapausearrestkeywellunderstandingprofilesAsiantigermosquitolipidsassociatedincreasedenergychangesalternativelife-historystrategyallowsorganismsenterdevelopmentalanticipationunfavorableconditionswidespreadamonginsectsplaysroleenhancingoverwintersurvivaldefiningseasonalgeographicdistributionspopulationsNext-generationsequencinggreatlyadvancedtranscriptionalbasiscrucialadaptationlessknownphysiologylevelcharacterizeduseduntargetedapproachcapturerelativeabundance250241observedadjustmentsstorageincludingaccumulationformationlargerdropletslipogenesisshiftssuggestingreducedutilizationalsofoundneuroregulatory-insulin-associatedpotentialrolesFinallydetectedgroupunidentifieddiapause-specificphysicalpropertiessimilarsteroids/steroidderivativesmayecdysteroidalTogetherresultsdeepenmetabolicidentifytargetsfutureinvestigationsDiapause-associatedDevelopmentalEmbryonicLipidomicsUntargetedmetabolomics

Similar Articles

Cited By