Fecal microbiota associated with phytohaemagglutinin-induced immune response in nestlings of a passerine bird.

Jakub Kreisinger, Lucie Schmiedová, Adéla Petrželková, Oldřich Tomášek, Marie Adámková, Romana Michálková, Jean-François Martin, Tomáš Albrecht
Author Information
  1. Jakub Kreisinger: Department of Zoology Faculty of Science Charles University Prague Czech Republic. ORCID
  2. Lucie Schmiedová: Department of Zoology Faculty of Science Charles University Prague Czech Republic.
  3. Adéla Petrželková: Department of Ecology Faculty of Science Charles University Prague Czech Republic.
  4. Oldřich Tomášek: Department of Zoology Faculty of Science Charles University Prague Czech Republic. ORCID
  5. Marie Adámková: Czech Academy of Sciences Institute of Vertebrate Biology Brno Czech Republic.
  6. Romana Michálková: Department of Zoology Faculty of Science Charles University Prague Czech Republic.
  7. Jean-François Martin: Montpellier-SupAgro UMR CBGP Montferrier-sur-Lez France.
  8. Tomáš Albrecht: Department of Zoology Faculty of Science Charles University Prague Czech Republic. ORCID

Abstract

The vertebrate gastrointestinal tract is inhabited by a diverse community of bacteria, the so-called gut microbiota (GM). Research on captive mammalian models has revealed tight mutual interactions between immune functions and GM. However, our knowledge of GM versus immune system interactions in wild populations and nonmammalian species remains poor. Here, we focus on the association between GM community structure and immune response measured via the phytohaemagglutinin (PHA) skin swelling test in 12-day-old nestlings of a passerine bird, the barn swallow (). The PHA test, a widely used method in field ecoimmunology, assesses cell-mediated immunity. GM structure was inferred based on high-throughput 16S rRNA sequencing of microbial communities in fecal samples. We did not find any association between PHA response and GM diversity; however, our data revealed that the intensity of PHA response was correlated with differences in GM composition at the whole-community level. Ten bacterial operational taxonomic units corresponding to both putative commensal and pathogens were identified as drivers of the compositional variation. In conclusion, our study suggests existence of GM versus immune system interactions in a free-living nonmammalian species, which corresponds with previous research on captive vertebrates.

Keywords

References

  1. Nucleic Acids Res. 2013 Jan 7;41(1):e1 [PMID: 22933715]
  2. Poult Sci. 1978 Jan;57(1):246-50 [PMID: 674011]
  3. Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2247-52 [PMID: 24390544]
  4. Clin Exp Allergy. 2009 Dec;39(12):1842-51 [PMID: 19735274]
  5. Science. 2008 Jun 20;320(5883):1647-51 [PMID: 18497261]
  6. Front Zool. 2005 Oct 20;2:16 [PMID: 16242022]
  7. Nature. 2010 Mar 4;464(7285):59-65 [PMID: 20203603]
  8. Mol Ecol. 2017 Oct;26(19):5292-5304 [PMID: 28401612]
  9. Mol Ecol. 2014 Oct;23(20):5048-60 [PMID: 25204516]
  10. J Exp Zool A Ecol Genet Physiol. 2016 Feb;325(2):132-41 [PMID: 26718121]
  11. Proc Natl Acad Sci U S A. 2010 May 25;107(21):9546-51 [PMID: 20460310]
  12. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 [PMID: 19801464]
  13. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  14. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  15. Immune Netw. 2014 Dec;14(6):277-88 [PMID: 25550694]
  16. Front Microbiol. 2014 May 16;5:223 [PMID: 24904538]
  17. Appl Environ Microbiol. 2006 Jul;72(7):5069-72 [PMID: 16820507]
  18. Nat Methods. 2013 Oct;10(10):996-8 [PMID: 23955772]
  19. Mol Ecol. 2012 Jul;21(13):3363-78 [PMID: 22486918]
  20. Biol Rev Camb Philos Soc. 2009 Aug;84(3):349-73 [PMID: 19438430]
  21. PLoS One. 2008 Sep 29;3(9):e3295 [PMID: 18820730]
  22. EMBO J. 2013 Nov 27;32(23):3017-28 [PMID: 24141879]
  23. Proc Biol Sci. 2003 Dec 7;270(1532):2485-9 [PMID: 14667340]
  24. Clin Infect Dis. 2001 Mar 15;32(6):897-928 [PMID: 11247714]
  25. Gut Microbes. 2012 Jan-Feb;3(1):4-14 [PMID: 22356853]
  26. J Evol Biol. 2006 Nov;19(6):1973-8 [PMID: 17040395]
  27. Cell. 2014 Mar 27;157(1):121-41 [PMID: 24679531]
  28. Gut Pathog. 2014 Jul 29;6:33 [PMID: 25110521]
  29. Ecology. 2014 Nov;95(11):3027-3034 [PMID: 25505800]
  30. Proc Biol Sci. 2004 Jan 22;271(1535):197-204 [PMID: 15058398]
  31. PLoS One. 2017 Jun 29;12(6):e0179945 [PMID: 28662106]
  32. Ecol Evol. 2018 Sep 20;8(19):9793-9802 [PMID: 30386575]
  33. Mol Ecol. 2011 Dec;20(23):5103-10 [PMID: 21895821]
  34. J Microbiol Biotechnol. 2015 Oct;25(10):1697-701 [PMID: 26165315]
  35. Vet Microbiol. 2010 Dec 15;146(3-4):320-5 [PMID: 20646876]
  36. Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):18933-8 [PMID: 20937875]
  37. BMC Bioinformatics. 2011 Sep 30;12:385 [PMID: 21961884]
  38. Bioinformatics. 2014 Mar 1;30(5):614-20 [PMID: 24142950]
  39. Integr Comp Biol. 2017 Oct 1;57(4):690-704 [PMID: 28985326]
  40. Nat Immunol. 2013 Sep;14(9):879-83 [PMID: 23959175]
  41. Biol Lett. 2005 Sep 22;1(3):326-9 [PMID: 17148199]
  42. Bioinformatics. 2010 Jan 15;26(2):266-7 [PMID: 19914921]
  43. J Infect. 1990 May;20(3):237-40 [PMID: 2341734]
  44. Appl Environ Microbiol. 2005 Dec;71(12):8228-35 [PMID: 16332807]
  45. PLoS One. 2015 Oct 07;10(10):e0137679 [PMID: 26444876]
  46. Front Microbiol. 2017 Feb 01;8:50 [PMID: 28220109]
  47. Microbiology (Reading). 2009 Jun;155(Pt 6):1749-1757 [PMID: 19383684]
  48. Rev Infect Dis. 1984 May-Jun;6(3):328-37 [PMID: 6377440]
  49. PLoS One. 2010 Mar 10;5(3):e9490 [PMID: 20224823]
  50. Oecologia. 2002 Jan;130(2):185-190 [PMID: 28547140]
  51. BMC Bioinformatics. 2017 Jan 3;18(1):4 [PMID: 28049409]
  52. Mol Ecol. 2014 Oct;23(19):4831-45 [PMID: 24975397]
  53. Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5 [PMID: 12883005]
  54. PeerJ. 2014 Mar 20;2:e321 [PMID: 24711971]
  55. Physiol Rev. 2010 Jul;90(3):859-904 [PMID: 20664075]
  56. Microbiome. 2014 Sep 30;2(1):30 [PMID: 27367037]
  57. Cell. 2009 Oct 30;139(3):485-98 [PMID: 19836068]
  58. Am J Clin Nutr. 2011 Jul;94(1):58-65 [PMID: 21543530]
  59. Cell. 2016 May 5;165(4):842-53 [PMID: 27133167]

Word Cloud

Created with Highcharts 10.0.0GMimmuneresponsePHAinteractionscommunitymicrobiotacaptiverevealedversussystemnonmammalianspeciesassociationstructuretestnestlingspasserinebirdimmunityvertebrategastrointestinaltractinhabiteddiversebacteriaso-calledgutResearchmammalianmodelstightmutualfunctionsHoweverknowledgewildpopulationsremainspoorfocusmeasuredviaphytohaemagglutininskinswelling12-day-oldbarnswallowwidelyusedmethodfieldecoimmunologyassessescell-mediatedinferredbasedhigh-throughput16SrRNAsequencingmicrobialcommunitiesfecalsamplesfinddiversityhoweverdataintensitycorrelateddifferencescompositionwhole-communitylevelTenbacterialoperationaltaxonomicunitscorrespondingputativecommensalpathogensidentifieddriverscompositionalvariationconclusionstudysuggestsexistencefree-livingcorrespondspreviousresearchvertebratesFecalassociatedphytohaemagglutinin-inducedfitnessinflammationmetabarcodingmicrobiomesymbiosis

Similar Articles

Cited By