Aquatic versus Terrestrial Insects: Real or Presumed Differences in Population Dynamics?

Jill Lancaster, Barbara J Downes
Author Information
  1. Jill Lancaster: School of Geography, University of Melbourne, Melbourne, VIC 3010, Australia. JillL@unimelb.edu.au.
  2. Barbara J Downes: School of Geography, University of Melbourne, Melbourne, VIC 3010, Australia. barbarad@unimelb.edu.au.

Abstract

The study of insect populations is dominated by research on terrestrial insects. Are aquatic insect populations different or are they just presumed to be different? We explore the evidence across several topics. (1) Populations of terrestrial herbivorous insects are constrained most often by enemies, whereas aquatic herbivorous insects are constrained more by food supplies, a real difference related to the different plants that dominate in each ecosystem. (2) Population outbreaks are presumed not to occur in aquatic insects. We report three examples of cyclical patterns; there may be more. (3) Aquatic insects, like terrestrial insects, show strong oviposition site selection even though they oviposit on surfaces that are not necessarily food for their larvae. A novel outcome is that density of oviposition habitat can determine larval densities. (4) Aquatic habitats are often largely 1-dimensional shapes and this is presumed to influence dispersal. In rivers, drift by insects is presumed to create downstream dispersal that has to be countered by upstream flight by adults. This idea has persisted for decades but supporting evidence is scarce. Few researchers are currently working on the dynamics of aquatic insect populations; there is scope for many more studies and potentially enlightening contrasts with terrestrial insects.

Keywords

References

  1. Proc Biol Sci. 2000 Aug 7;267(1452):1511-5 [PMID: 11007326]
  2. J Parasitol. 2001 Oct;87(5):1225-7 [PMID: 11695410]
  3. Science. 2002 Dec 13;298(5601):2171-3 [PMID: 12481132]
  4. Oecologia. 2003 Aug;136(3):465-75 [PMID: 12761671]
  5. Oecologia. 2004 Jan;138(1):39-47 [PMID: 14530962]
  6. Sci Total Environ. 2003 Dec 30;317(1-3):207-33 [PMID: 14630423]
  7. Am Nat. 2004 May;163(5):754-62 [PMID: 15122492]
  8. Oecologia. 2006 Jun;148(3):526-37 [PMID: 16496182]
  9. J Anim Ecol. 2007 Jul;76(4):782-9 [PMID: 17584384]
  10. Nature. 2008 Mar 6;452(7183):84-7 [PMID: 18322533]
  11. Oecologia. 2008 May;156(2):431-40 [PMID: 18322706]
  12. Ecol Lett. 2008 Jul;11(7):740-55 [PMID: 18445030]
  13. Aquat Toxicol. 2009 Jun 28;93(2-3):138-49 [PMID: 19477535]
  14. J Anim Ecol. 2010 Jan;79(1):235-48 [PMID: 19840172]
  15. Oecologia. 2010 Jun;163(2):373-84 [PMID: 20112109]
  16. Mol Ecol. 2010 Aug;19(15):3038-51 [PMID: 20618697]
  17. J Anim Ecol. 2011 Sep;80(5):1061-9 [PMID: 21521214]
  18. Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14521-6 [PMID: 21876131]
  19. Ecology. 2011 Aug;92(8):1565-72 [PMID: 21905423]
  20. Oecologia. 2012 Apr;168(4):967-76 [PMID: 22015569]
  21. Arthropod Struct Dev. 2013 Mar;42(2):127-34 [PMID: 23137612]
  22. Ecol Lett. 2014 Apr;17(4):426-34 [PMID: 24460729]
  23. Oecologia. 2000 Oct;125(2):186-200 [PMID: 24595830]
  24. Ecol Entomol. 2014 Apr 1;39(2):245-252 [PMID: 24678139]
  25. Trends Ecol Evol. 2014 Aug;29(8):444-50 [PMID: 24962790]
  26. Insects. 2011 Oct 20;2(4):447-61 [PMID: 26467824]
  27. Biol Rev Camb Philos Soc. 2017 May;92(2):1128-1141 [PMID: 27062094]
  28. Ecology. 2015 Nov;96(11):2891-901 [PMID: 27070009]
  29. Biol Rev Camb Philos Soc. 2017 May;92(2):1241-1249 [PMID: 27145528]
  30. Ecology. 2017 Feb;98(2):565-575 [PMID: 27885655]
  31. Oecologia. 1996 Aug;107(3):321-331 [PMID: 28307260]
  32. Oecologia. 1997 Mar;110(1):147-152 [PMID: 28307463]
  33. Oecologia. 1982 Feb;52(2):202-207 [PMID: 28310508]
  34. Oecologia. 1971 Dec;6(4):350-379 [PMID: 28310981]
  35. Oecologia. 1987 Aug;73(1):41-47 [PMID: 28311403]
  36. Oecologia. 1991 Oct;88(2):277-288 [PMID: 28312144]
  37. Oecologia. 1992 Feb;89(2):168-175 [PMID: 28312870]
  38. Oecologia. 2017 May;184(1):171-182 [PMID: 28349200]
  39. Oecologia. 2001 Sep;129(1):155-160 [PMID: 28547063]
  40. Evolution. 1982 Jul;36(4):810-821 [PMID: 28568232]
  41. R Soc Open Sci. 2017 Jul 19;4(7):170190 [PMID: 28791146]
  42. Ecol Lett. 2018 Jan;21(1):138-150 [PMID: 29098754]
  43. Curr Opin Insect Sci. 2018 Jun;27:16-20 [PMID: 30025629]
  44. Q Rev Biol. 1988 Jun;63(2):139-65 [PMID: 3045862]

Grants

  1. DP120103145/Australian Research Council
  2. DP160102262/Australian Research Council

Word Cloud

Created with Highcharts 10.0.0insectsinsectterrestrialaquaticpresumedpopulationsAquaticovipositiondispersaldifferentevidenceherbivorousconstrainedoftenfoodPopulationoutbreaksdriftflightpopulationstudydominatedresearchjustdifferent?exploreacrossseveraltopics1Populationsenemieswhereassuppliesrealdifferencerelatedplantsdominateecosystem2occurreportthreeexamplescyclicalpatternsmay3likeshowstrongsiteselectioneventhoughovipositsurfacesnecessarilylarvaenoveloutcomedensityhabitatcandeterminelarvaldensities4habitatslargely1-dimensionalshapesinfluenceriverscreatedownstreamcounteredupstreamadultsideapersisteddecadessupportingscarceresearcherscurrentlyworkingdynamicsscopemanystudiespotentiallyenlighteningcontrastsversusTerrestrialInsects:RealPresumedDifferencesDynamics?NorthAtlanticOscillationherbivoryparasitescyclesregulation

Similar Articles

Cited By