Exercise activates vagal induction of dopamine and attenuates systemic inflammation.

Guilherme Shimojo, Biju Joseph, Roshan Shah, Fernanda M Consolim-Colombo, Kátia De Angelis, Luis Ulloa
Author Information
  1. Guilherme Shimojo: Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA; Nove de Julho University (UNINOVE), Sao Paulo, Brazil.
  2. Biju Joseph: Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA.
  3. Roshan Shah: Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA.
  4. Fernanda M Consolim-Colombo: Nove de Julho University (UNINOVE), Sao Paulo, Brazil; Hypertension Unit, Heart Institute (INCOR) School of Medicine, University of São Paulo, São Paulo, SP, Brazil.
  5. Kátia De Angelis: Nove de Julho University (UNINOVE), Sao Paulo, Brazil; Department of Physiology, Federal University of Sao Paulo (UNIFESP), Brazil.
  6. Luis Ulloa: Department of Surgery, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA; Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Rutgers Biomedical Health Sciences, Newark, NJ 07103, USA. Electronic address: Luis.Ulloa@Rutgers.edu.

Abstract

Physical exercise is one of the most important factors improving quality of life, but it is not feasible for patients with morbidity or limited mobility. Most previous studies focused on high-intensity or long-term exercise that causes metabolic stress or physiological adaption, respectively. Here, we studied how moderate-intensity swimming affects systemic inflammation in 6-8 week old C57BL/6J male mice during endotoxemia. One-hour swimming prevented hypokalemia, hypocalcemia, attenuated serum levels of inflammatory cytokines, increased anti-inflammatory cytokines but affected neither IL6 nor glycemia before or after the endotoxic challenge. Exercise attenuated serum TNF levels by inhibiting its production in the spleen through a mechanism mediated by the subdiaphragmatic vagus nerve but independent of the splenic nerve. Exercise increased serum levels of dopamine, and adrenalectomy prevented the potential of exercise to induce dopamine and to attenuate serum TNF levels. Dopaminergic agonist type-1, fenoldopam, inhibited TNF production in splenocytes. Conversely, dopaminergic antagonist type-1, butaclamol, attenuated exercise control of serum TNF levels. These results suggest that vagal induction of dopamine may contribute to the anti-inflammatory potential of physical exercise.

Keywords

References

  1. J Appl Physiol (1985). 2016 Mar 15;120(6):657-8 [PMID: 26494451]
  2. Physiol Rev. 2008 Oct;88(4):1379-406 [PMID: 18923185]
  3. Exerc Sport Sci Rev. 2006 Oct;34(4):176-81 [PMID: 17031256]
  4. J Infect Dis. 2005 Jun 15;191(12):2138-48 [PMID: 15898001]
  5. J Appl Physiol (1985). 1994 Sep;77(3):1542-7 [PMID: 7836163]
  6. Brain Behav Immun. 2005 Sep;19(5):398-403 [PMID: 16061149]
  7. J Cell Mol Med. 2009 Sep;13(9B):3774-85 [PMID: 19602049]
  8. Virus Res. 1998 Jan;53(1):13-25 [PMID: 9617766]
  9. Shock. 1995 Aug;4(2):89-95 [PMID: 7496903]
  10. Nature. 2006 Dec 14;444(7121):860-7 [PMID: 17167474]
  11. Trends Mol Med. 2017 Dec;23(12):1103-1120 [PMID: 29162418]
  12. Neuroscience. 2018 Jul 15;383:191-204 [PMID: 29772343]
  13. Science. 2011 Oct 7;334(6052):98-101 [PMID: 21921156]
  14. Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):11008-13 [PMID: 18669662]
  15. Nature. 1987 Dec 17-23;330(6149):662-4 [PMID: 3317066]
  16. Front Immunol. 2017 Nov 02;8:1452 [PMID: 29163522]
  17. Am J Physiol Endocrinol Metab. 2009 May;296(5):E1164-71 [PMID: 19276393]
  18. J Vasc Surg. 2002 Dec;36(6):1231-6 [PMID: 12469056]
  19. J Acupunct Meridian Stud. 2016 Oct;9(5):234-241 [PMID: 27776761]
  20. Nat Rev Drug Discov. 2005 Aug;4(8):673-84 [PMID: 16056392]
  21. Biol Sport. 2014 Mar;31(1):73-9 [PMID: 25187675]
  22. J Pharmacol Exp Ther. 1991 Jul 1;258(1):193-8 [PMID: 1677038]
  23. Am J Physiol Renal Physiol. 2007 Sep;293(3):F914-9 [PMID: 17634393]
  24. Int J Psychophysiol. 2011 Sep;81(3):169-76 [PMID: 21723331]
  25. Nat Med. 2014 Mar;20(3):291-5 [PMID: 24562381]
  26. Am J Physiol Endocrinol Metab. 2008 Sep;295(3):E586-94 [PMID: 18577694]
  27. Nat Rev Immunol. 2011 Feb;11(2):81 [PMID: 21469396]
  28. FASEB J. 2011 Dec;25(12):4476-85 [PMID: 21840939]
  29. Br J Sports Med. 2006 Mar;40(3):239-43 [PMID: 16505081]
  30. Trends Mol Med. 2005 Feb;11(2):56-63 [PMID: 15694867]
  31. Nature. 1980 May 22;285(5762):243-6 [PMID: 6154895]
  32. Brain Behav Immun. 2011 Jan;25(1):135-46 [PMID: 20851176]
  33. FASEB J. 2003 May;17(8):884-6 [PMID: 12626436]
  34. N Engl J Med. 2017 Jun 15;376(24):2311-2313 [PMID: 28528558]
  35. Scand J Med Sci Sports. 2012 Oct;22(5):643-52 [PMID: 21410542]
  36. J Exp Med. 2006 Jul 10;203(7):1623-8 [PMID: 16785311]
  37. Annu Rev Neurosci. 1993;16:299-321 [PMID: 8460895]
  38. Med Sci Sports Exerc. 2007 Mar;39(3):435-42 [PMID: 17473769]
  39. J Am Geriatr Soc. 2018 Jul;66(6):1172-1179 [PMID: 29637543]
  40. Am J Physiol Regul Integr Comp Physiol. 2008 Jan;294(1):R179-84 [PMID: 18003791]
  41. PLoS One. 2010 Apr 15;5(4):e9867 [PMID: 20419161]
  42. J Psychiatr Res. 2015 Sep;68:1-7 [PMID: 26228393]
  43. J Appl Physiol (1985). 2014 May 15;116(10):1272-80 [PMID: 24674860]
  44. Nat Med. 2004 Nov;10(11):1216-21 [PMID: 15502843]
  45. Nature. 1979 May 3;279(5708):72-4 [PMID: 450076]
  46. Gastroenterology. 2006 May;130(6):1822-30 [PMID: 16697744]
  47. Crit Care Med. 2010 Jul;38(7):1608-9 [PMID: 20562550]
  48. Pediatrics. 1992 Sep;90(3 Pt 2):498-504 [PMID: 1513615]
  49. J Am Coll Cardiol. 2004 Mar 17;43(6):1056-61 [PMID: 15028366]
  50. N Engl J Med. 2013 Aug 29;369(9):840-51 [PMID: 23984731]
  51. J Immunol. 2011 Jul 15;187(2):718-25 [PMID: 21666060]
  52. Physiol Behav. 2016 Oct 15;165:291-9 [PMID: 27526999]
  53. JAMA. 1997 Jul 16;278(3):234-40 [PMID: 9218672]
  54. Front Med (Lausanne). 2018 May 31;5:145 [PMID: 29904631]
  55. J Biol Chem. 1994 Nov 11;269(45):27925-31 [PMID: 7525564]
  56. PLoS One. 2014 May 01;9(5):e94927 [PMID: 24788542]
  57. Br J Clin Pharmacol. 1988 Jan;25(1):17-21 [PMID: 2897206]
  58. Brain Behav Immun. 2017 Aug;64:330-343 [PMID: 28392428]
  59. Proc Natl Acad Sci U S A. 2016 Jul 19;113(29):8284-9 [PMID: 27382171]
  60. JAMA. 2007 Jul 25;298(4):456-8 [PMID: 17652301]
  61. N Engl J Med. 2003 Apr 17;348(16):1546-54 [PMID: 12700374]
  62. Front Physiol. 2014 Mar 24;5:118 [PMID: 24715877]
  63. Nat Rev Immunol. 2011 Feb;11(2):85-97 [PMID: 21252989]
  64. Scand J Med Sci Sports. 2006 Feb;16 Suppl 1:3-63 [PMID: 16451303]
  65. Hypertension. 2009 Dec;54(6):1393-400 [PMID: 19841289]
  66. Immunol Cell Biol. 2000 Oct;78(5):483-4 [PMID: 11050530]
  67. J Immunol. 2011 Apr 1;186(7):4340-6 [PMID: 21339364]
  68. FASEB J. 2001 Dec;15(14):2748-50 [PMID: 11687509]
  69. J Appl Physiol (1985). 2005 Apr;98(4):1154-62 [PMID: 15772055]
  70. Diabetes. 2014 Aug;63(8):2800-11 [PMID: 24622799]
  71. Auton Neurosci. 2017 Dec;208:66-72 [PMID: 28964689]
  72. Shock. 2011 Jul;36(1):97-8 [PMID: 21677557]
  73. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8093-8 [PMID: 9223320]
  74. Immunol Rev. 2012 Sep;249(1):158-75 [PMID: 22889221]
  75. Exerc Immunol Rev. 2006;12:34-53 [PMID: 17201071]
  76. Recent Pat Inflamm Allergy Drug Discov. 2009 Jan;3(1):73-80 [PMID: 19149749]
  77. Scand J Clin Lab Invest. 1973 Nov;32(3):251-6 [PMID: 4769058]
  78. Crit Care. 2009;13(2):133 [PMID: 19439052]
  79. J Psychiatr Res. 2004 May-Jun;38(3):237-40 [PMID: 15003428]
  80. Br J Sports Med. 2001 Jun;35(3):170-3 [PMID: 11375875]
  81. Braz J Med Biol Res. 2003 Dec;36(12):1751-9 [PMID: 14666261]
  82. Med Sci Sports Exerc. 2018 Aug;50(8):1596-1602 [PMID: 29613999]
  83. Clinics (Sao Paulo). 2013 Jan;68(1):107-14 [PMID: 23420166]
  84. Nat Rev Immunol. 2011 Aug 05;11(9):607-15 [PMID: 21818123]
  85. Front Immunol. 2018 May 04;9:943 [PMID: 29780390]
  86. Shock. 2006 May;25(5):500-6 [PMID: 16680015]
  87. Biochem Soc Trans. 2002 Apr;30(2):270-5 [PMID: 12023863]
  88. JAMA. 2001 Jul 18;286(3):327-34 [PMID: 11466099]
  89. Nature. 2000 May 25;405(6785):458-62 [PMID: 10839541]
  90. Scand J Med Sci Sports. 2015 Dec;25 Suppl 3:1-72 [PMID: 26606383]
  91. Front Neurol. 2018 Mar 15;9:155 [PMID: 29599746]

Grants

  1. R01 GM114180/NIGMS NIH HHS

MeSH Term

Animals
Anti-Inflammatory Agents
Cytokines
Dopamine
Endotoxemia
Inflammation
Lipopolysaccharides
Male
Mice
Mice, Inbred C57BL
Physical Conditioning, Animal
Sepsis
Tumor Necrosis Factor-alpha
Vagus Nerve

Chemicals

Anti-Inflammatory Agents
Cytokines
Lipopolysaccharides
Tumor Necrosis Factor-alpha
Dopamine

Word Cloud

Created with Highcharts 10.0.0exerciseserumlevelsExerciseTNFdopamineattenuatedswimmingsystemicinflammationpreventedcytokinesincreasedanti-inflammatoryproductionnervepotentialtype-1vagalinductionPhysicaloneimportantfactorsimprovingqualitylifefeasiblepatientsmorbiditylimitedmobilitypreviousstudiesfocusedhigh-intensitylong-termcausesmetabolicstressphysiologicaladaptionrespectivelystudiedmoderate-intensityaffects6-8 weekoldC57BL/6JmalemiceendotoxemiaOne-hourhypokalemiahypocalcemiainflammatoryaffectedneitherIL6glycemiaendotoxicchallengeinhibitingspleenmechanismmediatedsubdiaphragmaticvagusindependentsplenicadrenalectomyinduceattenuateDopaminergicagonistfenoldopaminhibitedsplenocytesConverselydopaminergicantagonistbutaclamolcontrolresultssuggestmaycontributephysicalactivatesattenuatesDopamineEndotoxemiaInflammationSepsisTumorNecrosisFactor

Similar Articles

Cited By (24)