Effect of temperature change on synaptic transmission at crayfish neuromuscular junctions.

Yuechen Zhu, Leo de Castro, Robin Lewis Cooper
Author Information
  1. Yuechen Zhu: Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
  2. Leo de Castro: Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
  3. Robin Lewis Cooper: Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA rlcoop1@uky.edu. ORCID

Abstract

Ectothermic animals in areas characterised by seasonal changes are susceptible to extreme fluctuations in temperature. To survive through varied temperatures, ectotherms have developed unique strategies. This study focuses on synaptic transmission function at cold temperatures, as it is a vital component of ectothermic animals' survival. For determining how synaptic transmission is influenced by an acute change in temperature (20��C to 10��C within a minute) and chronic cold (10��C), the crayfish () neuromuscular junction (NMJ) was used as a model. To simulate chronic cold conditions, crayfish were acclimated to 15��C for 1���week and then to 10��C for 1���week. They were then used to examine the synaptic properties associated with the low output nerve terminals on the opener muscle in the walking legs and high output innervation on the abdominal deep extensor muscle. The excitatory postsynaptic potentials (EPSPs) of the opener NMJs increased in amplitude with acute warming (20��C) after being acclimated to cold; however, the deep extensor muscles showed varied changes in EPSP amplitude. Synaptic transmission at both NMJs was enhanced with exposure to the modulators serotonin or octopamine. The membrane resistance of the muscles decreased 33% and the resting membrane potential hyperpolarised upon warm exposure. Analysis of haemolymph indicated that octopamine increases during cold exposure. These results suggest bioamine modulation as a possible mechanism for ensuring that synaptic transmission remains functional at low temperatures.

Keywords

References

  1. Comp Biochem Physiol Comp Physiol. 1993 Mar;104(3):423-9 [PMID: 8097145]
  2. J Neurosci. 2012 May 2;32(18):6312-22 [PMID: 22553037]
  3. J Comp Physiol B. 2016 Oct;186(7):829-41 [PMID: 27209390]
  4. Mol Cell Proteomics. 2016 Feb;15(2):368-81 [PMID: 26307175]
  5. Comp Biochem Physiol B Biochem Mol Biol. 2000 Dec;127(4):533-50 [PMID: 11281271]
  6. J Vis Exp. 2011 Jan 18;(47): [PMID: 21304461]
  7. Rev Esp Fisiol. 1985 Sep;41(3):325-9 [PMID: 4070762]
  8. J Exp Biol. 2014 Jan 1;217(Pt 1):6-15 [PMID: 24353199]
  9. J Vis Exp. 2011 Jan 18;(47): [PMID: 21304459]
  10. J Neurosci. 1990 Apr;10(4):1099-109 [PMID: 2158524]
  11. Neuroscience. 2012 Dec 6;225:185-98 [PMID: 22929013]
  12. Proc Biol Sci. 2015 Oct 22;282(1817):20151483 [PMID: 26468241]
  13. Am J Physiol Regul Integr Comp Physiol. 2016 Jun 1;310(11):R1193-211 [PMID: 27053646]
  14. JAMA. 2013 Nov 27;310(20):2174-83 [PMID: 24105303]
  15. Biol Rev Camb Philos Soc. 1949 Jan;24(1):1-20 [PMID: 18119872]
  16. J Exp Biol. 1997;200(Pt 4):677-91 [PMID: 9318419]
  17. Brain Res. 1979 Jul 20;170(3):543-6 [PMID: 223727]
  18. Annu Rev Physiol. 1981;43:281-300 [PMID: 7011185]
  19. Comp Biochem Physiol C Comp Pharmacol Toxicol. 1987;88(2):335-42 [PMID: 2893688]
  20. FEBS J. 2010 Jan;277(1):174-85 [PMID: 19968716]
  21. J Insect Physiol. 2015 Aug;79:1-9 [PMID: 25982520]
  22. Prog Neurobiol. 1976;7(Pt 4):291-391 [PMID: 12537]
  23. J Exp Biol. 2000 Feb;203(Pt 3):537-45 [PMID: 10637182]
  24. J Neurophysiol. 2013 Oct;110(8):1984-96 [PMID: 23904495]
  25. Nature. 2015 Feb 12;518(7538):236-9 [PMID: 25607368]
  26. J Neurotrauma. 2009 Mar;26(3):437-43 [PMID: 19281415]
  27. Comp Biochem Physiol. 1966 Aug;18(4):701-23 [PMID: 5967407]
  28. PLoS Biol. 2015 Sep 29;13(9):e1002265 [PMID: 26417944]
  29. J Exp Biol. 2007 Mar;210(Pt 6):1025-35 [PMID: 17337715]
  30. J Neurosci. 1995 Jun;15(6):4209-22 [PMID: 7790906]
  31. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2677-81 [PMID: 7708704]
  32. Comp Biochem Physiol A Mol Integr Physiol. 2000 Feb;125(2):251-63 [PMID: 10825697]
  33. J Exp Zool. 2000 Oct 1;287(5):353-77 [PMID: 10980494]
  34. J Exp Biol. 1997;200(Pt 22):2881-92 [PMID: 9344977]
  35. J Exp Biol. 2011 Mar 1;214(Pt 5):726-34 [PMID: 21307058]
  36. RNA Biol. 2010 Nov-Dec;7(6):788-95 [PMID: 21045540]
  37. Physiol Rev. 1988 Jan;68(1):27-84 [PMID: 3275942]
  38. J Comp Physiol B. 2015 Aug;185(6):629-36 [PMID: 25994492]
  39. J Int Med Res. 2014 Jun;42(3):744-9 [PMID: 24670537]
  40. J Exp Biol. 2002 Feb;205(Pt 4):513-22 [PMID: 11893765]
  41. Proc R Soc Lond B Biol Sci. 1946 Aug 7;133:374-89 [PMID: 20994895]
  42. Sci Rep. 2016 Jun 30;6:28999 [PMID: 27357258]
  43. J Neurosci. 2001 Jun 15;21(12):4523-9 [PMID: 11404440]
  44. Science. 1980 Apr 4;208(4439):76-9 [PMID: 17731572]
  45. Brain Res. 1975 Jun 13;90(2):340-7 [PMID: 1095150]
  46. J Exp Biol. 1983 Jan;102:187-98 [PMID: 6300277]
  47. J Neurobiol. 1991 Sep;22(6):561-9 [PMID: 1919564]
  48. J Vis Exp. 2009 Nov 09;(33): [PMID: 19901896]
  49. Sci Rep. 2015 Nov 17;5:16340 [PMID: 26572317]
  50. Comp Biochem Physiol A Mol Integr Physiol. 2000 Dec;127(4):495-504 [PMID: 11154946]
  51. J Appl Physiol (1985). 2000 Mar;88(3):987-96 [PMID: 10710395]
  52. Physiol Genomics. 2012 Aug 1;44(15):764-77 [PMID: 22735925]
  53. J Comp Physiol A. 2001 Mar;187(2):145-54 [PMID: 15524002]
  54. J Vis Exp. 2011 Jan 18;(47): [PMID: 21304460]
  55. Brain Res. 1999 Sep 25;842(2):324-31 [PMID: 10526128]
  56. PLoS One. 2013 Jun 28;8(6):e67930 [PMID: 23840789]
  57. Rev Sci Tech. 2010 Aug;29(2):241-54 [PMID: 20919580]
  58. Muscle Nerve. 1998 Jul;21(7):921-31 [PMID: 9626252]
  59. J Exp Biol. 1990 Jan;148:245-54 [PMID: 2106564]
  60. Nature. 1976 Jun 24;261(5562):720-2 [PMID: 6916]
  61. Comp Biochem Physiol A Mol Integr Physiol. 2003 Nov;136(3):539-56 [PMID: 14613783]
  62. J Insect Physiol. 2007 Dec;53(12):1218-32 [PMID: 17662301]
  63. Biol Open. 2016 Feb 15;5(3):220-8 [PMID: 26879464]
  64. Nat Rev Neurosci. 2012 Feb 22;13(4):267-78 [PMID: 22353781]
  65. Comp Biochem Physiol A Comp Physiol. 1976;55(1):17-22 [PMID: 8239]
  66. Biol Bull. 1990 Jun;178(3):195-204 [PMID: 29314948]
  67. J Exp Biol. 2005 Aug;208(Pt 15):2923-9 [PMID: 16043597]
  68. J Insect Physiol. 2013 Oct;59(10):1041-8 [PMID: 23932963]
  69. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2015 Sep;201(9):851-6 [PMID: 25552317]
  70. J Neurophysiol. 1989 Jan;61(1):91-6 [PMID: 2918351]
  71. Neurosci Lett. 1994 Mar 14;169(1-2):56-8 [PMID: 7914017]

Word Cloud

Created with Highcharts 10.0.0transmissionsynapticcoldtemperaturetemperatures10��Ccrayfishexposurechangesvariedacutechange20��Cchronicneuromuscularusedacclimated1���weeklowoutputopenermuscledeepextensorNMJsamplitudemusclesSynapticoctopaminemembraneEctothermicanimalsareascharacterisedseasonalsusceptibleextremefluctuationssurviveectothermsdevelopeduniquestrategiesstudyfocusesfunctionvitalcomponentectothermicanimals'survivaldetermininginfluencedwithinminutejunctionNMJmodelsimulateconditions15��CexaminepropertiesassociatednerveterminalswalkinglegshighinnervationabdominalexcitatorypostsynapticpotentialsEPSPsincreasedwarminghowevershowedEPSPenhancedmodulatorsserotoninresistancedecreased33%restingpotentialhyperpolariseduponwarmAnalysishaemolymphindicatedincreasesresultssuggestbioaminemodulationpossiblemechanismensuringremainsfunctionalEffectjunctionsAdaptationCrustaceanInvertebratesModulation

Similar Articles

Cited By