Roles of Small GTPases in Acquired Tamoxifen Resistance in MCF-7 Cells Revealed by Targeted, Quantitative Proteomic Analysis.

Ming Huang, Yinsheng Wang
Author Information

Abstract

Development of tamoxifen resistance remains a tremendous challenge for the treatment of estrogen-receptor (ER)-positive breast cancer. Small GTPases of the Ras superfamily play crucial roles in intracellular trafficking and cell signaling, and aberrant small-GTPase signaling is implicated in many types of cancer. In this study, we employed a targeted, quantitative proteomic approach that relies on stable-isotope labeling by amino acids in cell culture (SILAC), gel fractionation, and scheduled multiple-reaction-monitoring (MRM) analysis, to assess the differential expression of small GTPases in MCF-7 and the paired tamoxifen-resistant breast cancer cells. The method displayed superior sensitivity and reproducibility over the shotgun-proteomic approach, and it facilitated the quantification of 96 small GTPases. Among them, 13 and 10 proteins were significantly down- and up-regulated (with >1.5-fold change), respectively, in the tamoxifen-resistant line relative to in the parental line. In particular, we observed a significant down-regulation of RAB31 in tamoxifen-resistant cells, which, in combination with bioinformatic analysis and downstream validation experiments, supported a role for RAB31 in tamoxifen resistance in ER-positive breast-cancer cells. Together, our results demonstrated that the targeted proteomic method constituted a powerful approach for revealing the role of small GTPases in therapeutic resistance.

References

  1. Mol Cell Proteomics. 2009 Jun;8(6):1278-94 [PMID: 19329653]
  2. CA Cancer J Clin. 2018 Jan;68(1):7-30 [PMID: 29313949]
  3. Carcinogenesis. 2013 Oct;34(10):2300-8 [PMID: 23740839]
  4. Cell Rep. 2015 Apr 7;11(1):111-24 [PMID: 25818297]
  5. Mol Cancer Res. 2006 Jun;4(6):379-86 [PMID: 16778085]
  6. Breast Cancer Res. 2012 Mar 14;14(2):R45 [PMID: 22417809]
  7. J Proteome Res. 2012 Jul 6;11(7):3908-13 [PMID: 22671702]
  8. Oncol Rep. 2015 Sep;34(3):1613-9 [PMID: 26166014]
  9. Cell Death Dis. 2017 Oct 19;8(10):e3129 [PMID: 29048402]
  10. BMC Genomics. 2005 Mar 11;6:37 [PMID: 15762987]
  11. J Proteome Res. 2011 Oct 7;10(10):4567-78 [PMID: 21936522]
  12. Cancer Res. 2008 Dec 1;68(23):9799-808 [PMID: 19047159]
  13. Cancer Res. 2013 Sep 1;73(17):5449-58 [PMID: 23832664]
  14. Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2736-41 [PMID: 21690342]
  15. Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13550-5 [PMID: 16141321]
  16. PLoS One. 2013 Jul 18;8(7):e70017 [PMID: 23875016]
  17. Proteomics. 2016 Jan;16(1):159-73 [PMID: 26552850]
  18. Clin Cancer Res. 2009 Feb 15;15(4):1487-95 [PMID: 19228750]
  19. EMBO Mol Med. 2013 May;5(5):723-36 [PMID: 23606532]
  20. Nat Commun. 2014 May 14;5:3881 [PMID: 24826867]
  21. Cancer Res. 2018 Sep 15;78(18):5431-5445 [PMID: 30072397]
  22. Cancer Res. 2006 Nov 1;66(21):10292-301 [PMID: 17079448]
  23. J Proteome Res. 2015 Feb 6;14(2):967-76 [PMID: 25569337]
  24. Oncol Rep. 2014 Jun;31(6):2776-84 [PMID: 24700169]
  25. Physiol Rev. 2001 Jan;81(1):153-208 [PMID: 11152757]
  26. J Natl Cancer Inst. 2010 Nov 3;102(21):1637-52 [PMID: 20935265]
  27. NPJ Breast Cancer. 2016;2: [PMID: 28691057]
  28. Br J Cancer. 2004 Jul 19;91(2):270-6 [PMID: 15199393]
  29. PLoS One. 2012;7(7):e39432 [PMID: 22792175]
  30. J Biol Chem. 2014 May 2;289(18):12375-89 [PMID: 24644286]
  31. Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2730-5 [PMID: 21482774]
  32. Mol Cancer. 2012 Aug 24;11:62 [PMID: 22920728]
  33. Nat Cell Biol. 2015 Jan;17(1):81-94 [PMID: 25531777]
  34. Mod Pathol. 2000 Jul;13(7):730-5 [PMID: 10912931]
  35. J Natl Cancer Inst. 2010 Jun 16;102(12):866-80 [PMID: 20484105]
  36. Bioinformatics. 2010 Apr 1;26(7):966-8 [PMID: 20147306]
  37. Sci Rep. 2014 Oct 23;4:6566 [PMID: 25338681]
  38. J Clin Oncol. 2005 Feb 20;23(6):1169-77 [PMID: 15718313]
  39. Cancer Lett. 2017 Feb 1;386:65-76 [PMID: 27838413]
  40. J Cell Mol Med. 2015 Jan;19(1):1-10 [PMID: 25472813]
  41. Cell Signal. 2017 Jan;30:154-161 [PMID: 27939839]

Grants

  1. R01 CA210072/NCI NIH HHS
  2. T32 ES018827/NIEHS NIH HHS

MeSH Term

Biomarkers, Tumor
Breast Neoplasms
Chromatography, High Pressure Liquid
Down-Regulation
Drug Resistance, Neoplasm
Female
Gene Expression Regulation, Neoplastic
Humans
Isotope Labeling
MCF-7 Cells
Mass Spectrometry
Monomeric GTP-Binding Proteins
Proteomics
Tamoxifen
Up-Regulation
rab GTP-Binding Proteins

Chemicals

Biomarkers, Tumor
RAB31 protein, human
Tamoxifen
Monomeric GTP-Binding Proteins
rab GTP-Binding Proteins

Word Cloud

Created with Highcharts 10.0.0GTPasesresistancecancerapproachsmallcellstamoxifenbreastSmallcellsignalingtargetedproteomicanalysisMCF-7methodtamoxifen-resistantlineRAB31roleDevelopmentremainstremendouschallengetreatmentestrogen-receptorER-positiveRassuperfamilyplaycrucialrolesintracellulartraffickingaberrantsmall-GTPaseimplicatedmanytypesstudyemployedquantitativereliesstable-isotopelabelingaminoacidscultureSILACgelfractionationscheduledmultiple-reaction-monitoringMRMassessdifferentialexpressionpaired tamoxifen-resistantdisplayedsuperiorsensitivityreproducibilityshotgun-proteomicfacilitatedquantification96Among1310proteinssignificantlydown-up-regulated>15-foldchangerespectivelyrelativeparentalparticularobservedsignificantdown-regulationcombinationbioinformaticdownstreamvalidationexperimentssupportedER-positivebreast-cancerTogetherresultsdemonstratedconstitutedpowerfulrevealingtherapeuticRolesAcquiredTamoxifenResistanceCellsRevealedTargetedQuantitativeProteomicAnalysis

Similar Articles

Cited By