Klotho Deficiency Accelerates Stem Cells Aging by Impairing Telomerase Activity.

Mujib Ullah, Zhongjie Sun
Author Information
  1. Mujib Ullah: Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Biomedical Research Center, Oklahoma City.
  2. Zhongjie Sun: Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Biomedical Research Center, Oklahoma City.

Abstract

Understanding the effect of molecular pathways involved in the age-dependent deterioration of stem cell function is critical for developing new therapies. The overexpression of Klotho (KL), an antiaging protein, causes treated animal models to enjoy extended life spans. Now, the question stands: Does KL deficiency accelerate stem cell aging and telomere shortening? If so, what are the specific mechanisms by which it does this, and is cycloastragenol (CAG) treatment enough to restore telomerase activity in aged stem cells? We found that KL deficiency diminished telomerase activity by altering the expression of TERF1 and TERT, causing impaired differentiation potential, pluripotency, cellular senescence, and apoptosis in stem cells. Telomerase activity decreased with KL-siRNA knockdown. This suggests that both KL and telomeres regulate the stem cell aging process through telomerase subunits TERF1, POT1, and TERT using the TGF��, Insulin, and Wnt signaling. These pathways can rejuvenate stem cell populations in a CD90-dependent mechanism. Stem cell dysfunctions were largely provoked by KL deficiency and telomere shortening, owing to altered expression of TERF1, TGF��1, CD90, POT1, TERT, and basic fibroblast growth factor (bFGF). The CAG treatment partially rescued telomerase deterioration, suggesting that KL plays a critical role in life-extension by regulating telomere length and telomerase activity.

Keywords

References

  1. J Gerontol A Biol Sci Med Sci. 2014 Jun;69 Suppl 1:S39-42 [PMID: 24833585]
  2. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W21-6 [PMID: 17485473]
  3. J Gerontol A Biol Sci Med Sci. 2019 Jun 18;74(7):1043-1051 [PMID: 29300914]
  4. Nephron Clin Pract. 2014;128(1-2):1-10 [PMID: 25402964]
  5. J Investig Med. 2016 Aug;64(6):1128-33 [PMID: 27323770]
  6. Hypertension. 2009 Oct;54(4):810-7 [PMID: 19635988]
  7. Clin Interv Aging. 2015 Aug 04;10:1233-43 [PMID: 26346243]
  8. J Gerontol A Biol Sci Med Sci. 2019 Jan 1;74(1):27-32 [PMID: 30137208]
  9. Br J Sports Med. 2017 Mar;51(6):549-550 [PMID: 27251899]
  10. Stem Cell Res Ther. 2018 Jan 10;9(1):3 [PMID: 29321045]
  11. Cell Stem Cell. 2013 Feb 7;12(2):152-65 [PMID: 23395443]
  12. Cell Signal. 2012 May;24(5):981-90 [PMID: 22286106]
  13. Korean J Intern Med. 2011 Jun;26(2):113-22 [PMID: 21716585]
  14. Biochem Biophys Res Commun. 2016 Apr 29;473(2):455-61 [PMID: 26970306]
  15. J Gerontol A Biol Sci Med Sci. 2017 Dec 12;73(1):39-47 [PMID: 28510637]
  16. Genesis. 2006 May;44(5):225-32 [PMID: 16652363]
  17. Nat Med. 2014 Aug;20(8):870-80 [PMID: 25100532]
  18. PLoS One. 2013;8(1):e53760 [PMID: 23349740]
  19. Endocr Rev. 2015 Apr;36(2):174-93 [PMID: 25695404]
  20. Aging Clin Exp Res. 2016 Feb;28(1):69-76 [PMID: 25986237]
  21. Matrix Biol. 2013 Oct-Nov;32(7-8):452-65 [PMID: 23851162]
  22. J Gerontol A Biol Sci Med Sci. 2014 Jul;69(7):821-30 [PMID: 24418792]
  23. Neurosignals. 2014;22(1):52-63 [PMID: 25095809]
  24. Nat Rev Mol Cell Biol. 2007 Sep;8(9):729-40 [PMID: 17667954]
  25. Nature. 2018 Jan 25;553(7689):461-466 [PMID: 29342138]
  26. Nucleic Acids Res. 2012 Jan;40(Database issue):D1144-9 [PMID: 22086960]
  27. Cell Stem Cell. 2015 Jun 4;16(6):578-81 [PMID: 26247067]
  28. Head Face Med. 2006 Mar 31;2:8 [PMID: 16573842]
  29. EMBO J. 2015 Jun 12;34(12):1630-47 [PMID: 25770585]
  30. Curr Protein Pept Sci. 2016;17(8):821-826 [PMID: 27226196]
  31. Stem Cells. 2016 Jun;34(6):1615-25 [PMID: 26865060]
  32. World J Cardiol. 2014 Dec 26;6(12):1262-9 [PMID: 25548616]
  33. Exp Gerontol. 2016 Mar;75:24-9 [PMID: 26721376]
  34. J Gerontol A Biol Sci Med Sci. 2011 Feb;66(2):202-13 [PMID: 21030466]
  35. J Gerontol A Biol Sci Med Sci. 2017 Oct 12;72(11):1513-1522 [PMID: 28977399]
  36. Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):17312-5 [PMID: 15574496]
  37. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W779-82 [PMID: 15980584]
  38. Age (Dordr). 2011 Sep;33(3):261-74 [PMID: 20830528]
  39. EMBO J. 2015 May 12;34(10):1371-84 [PMID: 25820263]
  40. Life Sci. 2015 Nov 15;141:61-73 [PMID: 26408916]
  41. J Cell Physiol. 2010 Jun;223(3):658-66 [PMID: 20143330]
  42. Rejuvenation Res. 2016 Feb;19(1):3-12 [PMID: 26055182]
  43. Diabetes. 2015 Dec;64(12):4298-311 [PMID: 26340932]
  44. Ageing Res Rev. 2009 Jan;8(1):43-51 [PMID: 19022406]

Grants

  1. R01 AG049780/NIA NIH HHS
  2. R01 HL118558/NHLBI NIH HHS
  3. R01 HL122166/NHLBI NIH HHS

MeSH Term

Animals
Cellular Senescence
Glucuronidase
Klotho Proteins
Male
Mice
Stem Cells
Telomerase
Telomere Shortening
Time Factors

Chemicals

Telomerase
Glucuronidase
Klotho Proteins

Word Cloud

Created with Highcharts 10.0.0stemKLcelltelomeraseactivityKlothodeficiencytelomereTERF1TERTTelomerasepathwaysdeteriorationcriticalagingCAGtreatmentexpressioncellsPOT1StemCD90Understandingeffectmolecularinvolvedage-dependentfunctiondevelopingnewtherapiesoverexpressionantiagingproteincausestreatedanimalmodelsenjoyextendedlifespansNowquestionstands:accelerateshortening?specificmechanismscycloastragenolenoughrestoreagedcells?founddiminishedalteringcausingimpaireddifferentiationpotentialpluripotencycellularsenescenceapoptosisdecreasedKL-siRNAknockdownsuggeststelomeresregulateprocesssubunitsusingTGF��InsulinWntsignalingcanrejuvenatepopulationsCD90-dependentmechanismdysfunctionslargelyprovokedshorteningowingalteredTGF��1basicfibroblastgrowthfactorbFGFpartiallyrescuedsuggestingplaysrolelife-extensionregulatinglengthDeficiencyAcceleratesCellsAgingImpairingActivityAdiposeAntiaginggenesCycloastragenolPluripotencyenzymeTelomere

Similar Articles

Cited By