Role of TEM-1 β-Lactamase in the Predominance of Ampicillin-Sulbactam-Nonsusceptible in Japan.

Taro Noguchi, Yasufumi Matsumura, Toru Kanahashi, Michio Tanaka, Yasuhiro Tsuchido, Takuro Matsumura, Satoshi Nakano, Masaki Yamamoto, Miki Nagao, Satoshi Ichiyama
Author Information
  1. Taro Noguchi: Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
  2. Yasufumi Matsumura: Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan yazblood@kuhp.kyoto-u.ac.jp. ORCID
  3. Toru Kanahashi: Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
  4. Michio Tanaka: Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
  5. Yasuhiro Tsuchido: Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
  6. Takuro Matsumura: Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
  7. Satoshi Nakano: Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
  8. Masaki Yamamoto: Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
  9. Miki Nagao: Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
  10. Satoshi Ichiyama: Shiga General Hospital, Shiga, Japan.

Abstract

We investigated the epidemiology and resistance mechanisms of ampicillin-sulbactam-nonsusceptible , focusing on the role of the TEM-1 β-lactamase. We collected all nonduplicate clinical isolates at 10 Japanese hospitals during December 2014 and examined their antimicrobial susceptibility, β-lactamases, TEM-1 transferability, TEM-1 β-lactamase activity, outer membrane protein profile, membrane permeability, and clonal genotypes. Among the 329 isolates collected, 95 were ampicillin-sulbactam nonsusceptible. Of these ampicillin-sulbactam-nonsusceptible isolates, β-lactamases conferring resistance to sulbactam, such as AmpC, were present in 33%. Hyperproduction of sulbactam-susceptible β-lactamases, TEMs with a strong promoter, were rare (5%). The remaining 59 isolates (62%) had only sulbactam-susceptible β-lactamases, including TEM-1 with a wild-type promoter ( = 28), CTX-Ms ( = 13), or both ( = 17). All 45 transconjugants from 96 donors with TEM-1 had higher ampicillin-sulbactam MICs (4 to 96 mg/liter) than the recipient (2 mg/liter). In donors with only TEM-1, TEM-1 activity correlated with the 50% inhibitory concentration of sulbactam and ampicillin-sulbactam MICs. The decreased membrane permeation of sulbactam was associated with an increased ampicillin-sulbactam MIC. The reduced permeation was partly attributable to deficient outer membrane proteins, which were observed in 57% of the ampicillin-sulbactam-nonsusceptible isolates with only TEM-1 and a wild-type promoter. Sequence type 131 (ST131) was the most common clonal type (52%). TEM-1 with a wild-type promoter primarily contributed to ampicillin-sulbactam nonsusceptibility in , with the partial support of other mechanisms, such as reduced permeation. Conjugative TEM-1 and the clonal spread of ST131 may contribute to the prevalence of Japanese ampicillin-sulbactam-nonsusceptible isolates.

Keywords

References

  1. Clin Microbiol Rev. 2014 Jul;27(3):543-74 [PMID: 24982321]
  2. J Antimicrob Chemother. 2010 Mar;65(3):490-5 [PMID: 20071363]
  3. J Infect Chemother. 2017 Jun;23(6):339-348 [PMID: 28391954]
  4. Diagn Microbiol Infect Dis. 2013 Aug;76(4):532-3 [PMID: 23726651]
  5. J Clin Microbiol. 2011 Aug;49(8):2798-803 [PMID: 21632895]
  6. J Antimicrob Chemother. 2005 Jul;56(1):122-7 [PMID: 15890715]
  7. J Antimicrob Chemother. 1991 May;27(5):569-75 [PMID: 1653204]
  8. J Clin Microbiol. 1986 Sep;24(3):330-2 [PMID: 3489731]
  9. J Antimicrob Chemother. 2008 Mar;61(3):498-503 [PMID: 18250231]
  10. Antimicrob Agents Chemother. 2009 Jul;53(7):2733-9 [PMID: 19398649]
  11. FEMS Microbiol Lett. 1999 Jul 1;176(1):11-5 [PMID: 10418127]
  12. Emerg Infect Dis. 2016 Nov;22(11):1900-1907 [PMID: 27767006]
  13. J Clin Microbiol. 2002 Jun;40(6):2153-62 [PMID: 12037080]
  14. Rev Argent Microbiol. 2014 Jul-Sep;46(3):210-7 [PMID: 25444130]
  15. J Infect Dis. 2013 Mar 15;207(6):919-28 [PMID: 23288927]
  16. Int J Antimicrob Agents. 2016 Apr;47(4):328-34 [PMID: 27005459]
  17. Appl Environ Microbiol. 2007 Mar;73(6):1976-83 [PMID: 17277222]
  18. J Antimicrob Chemother. 2010 Dec;65(12):2518-29 [PMID: 20935300]
  19. Environ Microbiol Rep. 2013 Feb;5(1):58-65 [PMID: 23757131]
  20. J Antimicrob Chemother. 2017 Apr 1;72(4):1040-1049 [PMID: 28077674]
  21. J Antimicrob Chemother. 2011 Apr;66(4):745-51 [PMID: 21393132]
  22. Antimicrob Agents Chemother. 2004 Jan;48(1):1-14 [PMID: 14693512]
  23. Clin Microbiol Rev. 2010 Jan;23(1):160-201 [PMID: 20065329]
  24. Antimicrob Agents Chemother. 1994 Mar;38(3):494-8 [PMID: 8203843]
  25. J Med Microbiol. 2005 Dec;54(Pt 12):1183-7 [PMID: 16278432]
  26. Antimicrob Agents Chemother. 2012 Jul;56(7):3576-81 [PMID: 22491692]
  27. J Antimicrob Chemother. 2009 Jan;63(1):67-71 [PMID: 18931389]
  28. Antimicrob Agents Chemother. 2011 Feb;55(2):495-501 [PMID: 21135189]
  29. Eur J Clin Microbiol Infect Dis. 2010 Nov;29(11):1417-25 [PMID: 20700614]
  30. Appl Environ Microbiol. 2012 Mar;78(5):1353-60 [PMID: 22226951]
  31. Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5694-9 [PMID: 24706808]
  32. Antimicrob Agents Chemother. 2002 Dec;46(12):4035-7 [PMID: 12435720]
  33. J Antimicrob Chemother. 2002 Jul;50(1):11-8 [PMID: 12096001]
  34. Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):E2629-34 [PMID: 23798411]
  35. Antimicrob Agents Chemother. 1985 Apr;27(4):555-60 [PMID: 3873900]
  36. Antimicrob Agents Chemother. 2002 Oct;46(10):3156-63 [PMID: 12234838]
  37. Antimicrob Agents Chemother. 2010 Mar;54(3):969-76 [PMID: 19995920]
  38. J Clin Microbiol. 2000 Jan;38(1):40-3 [PMID: 10618060]
  39. Antimicrob Agents Chemother. 2017 Jul 25;61(8): [PMID: 28584160]

MeSH Term

Ampicillin
Anti-Bacterial Agents
Escherichia coli
Japan
Microbial Sensitivity Tests
Sulbactam
beta-Lactamases

Chemicals

Anti-Bacterial Agents
Ampicillin
beta-Lactamases
beta-lactamase TEM-1
Sulbactam

Word Cloud

Created with Highcharts 10.0.0TEM-1isolatesampicillin-sulbactamampicillin-sulbactam-nonsusceptibleβ-lactamasesmembranepromoterclonalsulbactamwild-type=permeationresistancemechanismsβ-lactamasecollectedJapaneseactivityoutersulbactam-susceptibledonorsMICsreducedtypeST131investigatedepidemiologyfocusingrolenonduplicateclinical10hospitalsDecember2014examinedantimicrobialsusceptibilitytransferabilityproteinprofilepermeabilitygenotypesAmong32995nonsusceptibleconferringAmpCpresent33%HyperproductionTEMsstrongrare5%remaining5962%including28CTX-Ms131745transconjugants96higher496 mg/literrecipient2 mg/litercorrelated50%inhibitoryconcentrationdecreasedassociatedincreasedMICpartlyattributabledeficientproteinsobserved57%Sequence131common52%primarilycontributednonsusceptibilitypartialsupportConjugativespreadmaycontributeprevalenceRoleβ-LactamasePredominanceAmpicillin-Sulbactam-NonsusceptibleJapanEscherichiacoli

Similar Articles

Cited By