NRP-1 interacts with GIPC1 and SYX to activate p38 MAPK signaling and cancer stem cell survival.

Daniel Grun, Gautam Adhikary, Richard L Eckert
Author Information
  1. Daniel Grun: Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland.
  2. Gautam Adhikary: Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland.
  3. Richard L Eckert: Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland. ORCID

Abstract

Epidermal cancer stem cells (ECS cells) comprise a limited population of cells that form aggressive, rapidly growing, and highly vascularized tumors. VEGF-A/NRP-1 signaling is a key driver of the ECS cell phenotype and aggressive tumor formation. However, relatively less is known regarding the downstream events following VEGF-A/NRP-1 interaction. In the present study, we show that VEGF-A/NRP-1, GIPC1, and Syx interact to increase RhoA-dependent p38 MAPK activity to enhance ECS cell spheroid formation, invasion, migration, and angiogenic potential. Inhibition or knockdown of NRP-1, GIPC1 or Syx attenuates RhoA and p38 activity to reduce the ECS cell phenotype, and NRP-1 knockout, or pharmacologic inhibition of VEGF-A/NRP-1 interaction or RhoA activity, reduces p38 MAPK activity and tumor growth. Moreover, expression of wild-type or constitutively-active RhoA, or p38, in NRP1-knockout cells, restores p38 activity and the ECS cell phenotype. These findings suggest that NRP-1 forms a complex with GIPC1 and Syx to activate RhoA/ROCK-dependent p38 activity to enhance the ECS cell phenotype and tumor formation.

Keywords

References

  1. Cancer Res. 2016 Dec 15;76(24):7168-7180 [PMID: 27913436]
  2. Drug Discov Today. 2013 May;18(9-10):447-55 [PMID: 23228652]
  3. Cancer Lett. 2014 Jul 28;349(2):120-7 [PMID: 24752068]
  4. FASEB J. 2010 Sep;24(9):3186-95 [PMID: 20400538]
  5. Oncogene. 2016 Aug 18;35(33):4379-87 [PMID: 26804163]
  6. Br J Cancer. 2010 Feb 2;102(3):541-52 [PMID: 20087344]
  7. Cancer Res. 2012 Aug 15;72(16):3912-8 [PMID: 22693250]
  8. J Exp Med. 2005 Apr 4;201(7):1089-99 [PMID: 15809353]
  9. PLoS Biol. 2009 Jan 27;7(1):e25 [PMID: 19175293]
  10. Exp Mol Med. 2013 Jun 07;45:e26 [PMID: 23743496]
  11. J Neurosci. 1999 Aug 1;19(15):6519-27 [PMID: 10414980]
  12. J Biol Chem. 2000 Mar 31;275(13):9725-33 [PMID: 10734125]
  13. Oncotarget. 2015 Aug 21;6(24):20525-39 [PMID: 25971211]
  14. Cell Rep. 2016 Aug 16;16(7):1810-9 [PMID: 27498861]
  15. J Cell Biol. 1988 Mar;106(3):761-71 [PMID: 2450098]
  16. J Intern Med. 2013 Feb;273(2):114-27 [PMID: 23216836]
  17. Biochem J. 2011 Jul 15;437(2):169-83 [PMID: 21711246]
  18. PLoS One. 2013 Dec 20;8(12):e84324 [PMID: 24376802]
  19. Cell. 1995 Jun 16;81(6):849-56 [PMID: 7781062]
  20. Oncogene. 2018 Aug;37(34):4711-4722 [PMID: 29755126]
  21. Mol Biol Cell. 2005 Jul;16(7):3117-27 [PMID: 15843433]
  22. J Biol Chem. 1998 Sep 18;273(38):24387-95 [PMID: 9733728]
  23. Biochem Soc Trans. 2014 Dec;42(6):1623-8 [PMID: 25399580]
  24. J Med Chem. 2010 Mar 11;53(5):2215-26 [PMID: 20151671]
  25. EMBO J. 2000 Mar 15;19(6):1301-11 [PMID: 10716930]
  26. Arch Immunol Ther Exp (Warsz). 2016 Aug;64(4):259-78 [PMID: 26725045]
  27. Oncogene. 1998 Jul 23;17(3):303-11 [PMID: 9690512]
  28. J Neurochem. 2005 Feb;92(4):850-8 [PMID: 15686487]
  29. Mol Carcinog. 2015 Oct;54(10):947-58 [PMID: 26258961]
  30. Cancer Res. 2016 Dec 15;76(24):7265-7276 [PMID: 27780825]
  31. Circ Res. 2008 Sep 26;103(7):710-6 [PMID: 18757825]
  32. Mol Biol Cell. 2006 Apr;17(4):1880-7 [PMID: 16467373]
  33. J Biol Chem. 2002 Jul 5;277(27):24818-25 [PMID: 11986311]
  34. Cancer Res. 2006 Aug 15;66(16):7843-8 [PMID: 16912155]
  35. J Cell Physiol. 2003 Jul;196(1):196-205 [PMID: 12767056]
  36. Tumour Biol. 2016 Oct;37(10):13777-13788 [PMID: 27481513]
  37. J Biol Chem. 2013 Jun 14;288(24):17759-68 [PMID: 23599428]
  38. J Biol Chem. 2003 Sep 5;278(36):34277-85 [PMID: 12810719]
  39. Semin Cancer Biol. 1992 Apr;3(2):65-71 [PMID: 1378311]
  40. Cancer Res. 2005 May 1;65(9):3664-70 [PMID: 15867361]
  41. J Mol Cell Biol. 2016 Aug;8(4):328-37 [PMID: 27402810]
  42. Cancer Res. 1981 May;41(5):1657-63 [PMID: 7214336]
  43. Blood. 2011 Jul 21;118(3):816-26 [PMID: 21586748]
  44. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12340-5 [PMID: 9770488]
  45. J Skin Cancer. 2012;2012:483439 [PMID: 23125933]
  46. Biol Open. 2015 Jul 24;4(9):1063-76 [PMID: 26209534]
  47. Oncogene. 2001 Nov 1;20(50):7307-17 [PMID: 11704860]
  48. J Biol Chem. 1998 Aug 28;273(35):22272-8 [PMID: 9712843]
  49. Arch Dermatol. 2010 Mar;146(3):283-7 [PMID: 20231499]
  50. Cancer. 2004 Nov 15;101(10):2341-50 [PMID: 15476280]
  51. J Biol Chem. 2006 Sep 8;281(36):26225-34 [PMID: 16849316]
  52. Cell. 1998 Mar 20;92(6):735-45 [PMID: 9529250]

Grants

  1. CA131074/NIH HHS
  2. CA184027/NIH HHS
  3. R01 CA184027/NCI NIH HHS
  4. R01 CA131074/NCI NIH HHS
  5. R01 CA211909/NCI NIH HHS

MeSH Term

Adaptor Proteins, Signal Transducing
Animals
Apoptosis
Biomarkers, Tumor
Cell Movement
Cell Proliferation
Epidermis
Gene Expression Regulation, Neoplastic
Guanine Nucleotide Exchange Factors
Humans
Mice
Mice, Inbred NOD
Mice, SCID
Neoplastic Stem Cells
Neovascularization, Pathologic
Neuropilin-1
Signal Transduction
Skin Neoplasms
Spheroids, Cellular
Tumor Cells, Cultured
Xenograft Model Antitumor Assays
p38 Mitogen-Activated Protein Kinases
rhoA GTP-Binding Protein

Chemicals

Adaptor Proteins, Signal Transducing
Biomarkers, Tumor
GIPC1 protein, human
Guanine Nucleotide Exchange Factors
NRP1 protein, human
PLEKHG5 protein, human
RHOA protein, human
Neuropilin-1
p38 Mitogen-Activated Protein Kinases
rhoA GTP-Binding Protein

Word Cloud

Created with Highcharts 10.0.0p38cellECSactivitycellsGIPC1NRP-1VEGF-A/NRP-1phenotypeSyxMAPKcancerstemtumorformationRhoAaggressivesignalinginteractionenhanceactivateEpidermalcompriselimitedpopulationformrapidlygrowinghighlyvascularizedtumorskeydriverHoweverrelativelylessknownregardingdownstreameventsfollowingpresentstudyshowinteractincreaseRhoA-dependentspheroidinvasionmigrationangiogenicpotentialInhibitionknockdownattenuatesreduceknockoutpharmacologicinhibitionreducesgrowthMoreoverexpressionwild-typeconstitutively-activeNRP1-knockoutrestoresfindingssuggestformscomplexRhoA/ROCK-dependentinteractsSYXsurvivalangiogenesissquamouscarcinomavascularization

Similar Articles

Cited By