Rapid Seedless Synthesis of Gold Nanoplates with Microscaled Edge Length in a High Yield and Their Application in SERS.

Sheng Chen, Pengyu Xu, Yue Li, Junfei Xue, Song Han, Weihui Ou, Li Li, Weihai Ni
Author Information
  1. Sheng Chen: 1Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444 People's Republic of China.
  2. Pengyu Xu: 1Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444 People's Republic of China.
  3. Yue Li: 1Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444 People's Republic of China.
  4. Junfei Xue: 1Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444 People's Republic of China.
  5. Song Han: 2Division of i-Lab & Key Laboratory for Nano-Bio Interface Research, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 Jiangsu People's Republic of China.
  6. Weihui Ou: 2Division of i-Lab & Key Laboratory for Nano-Bio Interface Research, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 Jiangsu People's Republic of China.
  7. Li Li: 1Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444 People's Republic of China.
  8. Weihai Ni: 2Division of i-Lab & Key Laboratory for Nano-Bio Interface Research, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 Jiangsu People's Republic of China.

Abstract

We report a facile and reproducible approach toward rapid seedless synthesis of single crystalline gold nanoplates with edge length on the order of microns. The reaction is carried out by reducing gold ions with ascorbic acid in the presence of cetyltrimethylammonium bromide (CTAB). Reaction temperature and molar ratio of CTAB/Au are critical for the formation of gold nanoplates in a high yield, which are, respectively, optimized to be 85 °C and 6. The highest yield that can be achieved is 60 % at the optimized condition. The synthesis to achieve the microscaled gold nanoplates can be finished in less than 1 h under proper reaction conditions. Therefore, the reported synthesis approach is a time- and cost-effective one. The gold nanoplates were further employed as the surface-enhanced Raman scattering substrates and investigated individually. Interestingly, only those adsorbed with gold nanoparticles exhibit pronounced Raman signals of probe molecules, where a maximum enhancement factor of 1.7 × 10 was obtained. The obtained Raman enhancement can be ascribed to the plasmon coupling between the gold nanoplate and the nanoparticle adsorbed onto it.

Keywords

References

  1. ACS Nano. 2008 Apr;2(4):677-86 [PMID: 19206598]
  2. J Am Chem Soc. 2009 Oct 14;131(40):14407-12 [PMID: 19757772]
  3. J Am Chem Soc. 2004 Jul 21;126(28):8648-9 [PMID: 15250706]
  4. Small. 2009 Apr;5(4):432-6 [PMID: 19197968]
  5. Nat Commun. 2010;1:150 [PMID: 21267000]
  6. Chem Commun (Camb). 2004 May 7;(9):1104-5 [PMID: 15116206]
  7. J Phys Chem B. 2005 Aug 18;109(32):15256-63 [PMID: 16852932]
  8. J Phys Chem A. 2013 Sep 19;117(37):9028-38 [PMID: 23961762]
  9. Inorg Chem. 2006 Jan 23;45(2):808-13 [PMID: 16411718]
  10. Chem Commun (Camb). 2009 Apr 21;(15):1981-3 [PMID: 19333464]
  11. Chem Commun (Camb). 2011 Feb 28;47(8):2426-8 [PMID: 21170426]
  12. Langmuir. 2004 Jul 20;20(15):6414-20 [PMID: 15248731]
  13. J Phys Chem B. 2005 Sep 29;109(38):17936-42 [PMID: 16853302]
  14. Chemistry. 2005 Jan 7;11(2):454-63 [PMID: 15565727]
  15. Chem Phys Lett. 2006 Dec 11;432(4-6):491-496 [PMID: 18496589]
  16. Nanoscale. 2014 Jun 21;6(12):6496-500 [PMID: 24839152]
  17. J Phys Chem B. 2006 Mar 16;110(10):4651-6 [PMID: 16526697]
  18. Nat Commun. 2014;5:3313 [PMID: 24531189]
  19. J Am Chem Soc. 2008 Nov 5;130(44):14442-3 [PMID: 18850710]
  20. J Phys Chem B. 2005 Nov 10;109(44):20731-6 [PMID: 16853687]
  21. Nanoscale. 2015 Nov 7;7(41):17529-37 [PMID: 26444556]
  22. Science. 1997 Feb 21;275(5303):1102-6 [PMID: 9027306]
  23. Angew Chem Int Ed Engl. 2014 Feb 10;53(7):1756-89 [PMID: 24421264]
  24. J Am Chem Soc. 2005 Apr 20;127(15):5312-3 [PMID: 15826156]
  25. Langmuir. 2006 Sep 26;22(20):8563-70 [PMID: 16981776]
  26. J Phys Chem B. 2005 Mar 3;109(8):3189-94 [PMID: 16851339]
  27. Nano Lett. 2014 Dec 10;14(12):7201-6 [PMID: 25412030]
  28. Acc Chem Res. 2001 Apr;34(4):257-64 [PMID: 11308299]
  29. Dalton Trans. 2015 Nov 7;44(41):17883-905 [PMID: 26434727]
  30. Chem Soc Rev. 2015 Oct 7;44(17):6330-74 [PMID: 26083903]
  31. Angew Chem Int Ed Engl. 2011 Jan 3;50(1):244-9 [PMID: 21038402]
  32. Nano Lett. 2008 Jul;8(7):2041-4 [PMID: 18537294]

Word Cloud

Created with Highcharts 10.0.0goldnanoplatessynthesiscanRamanapproachreactionCTAByieldoptimizedadsorbedenhancementobtainedSeedlessGoldSERSreportfacilereproducibletowardrapidseedlesssinglecrystallineedgelengthordermicronscarriedreducingionsascorbicacidpresencecetyltrimethylammoniumbromideReactiontemperaturemolarratioCTAB/Aucriticalformationhighrespectively85 °C6highestachieved60 %conditionachievemicroscaledfinishedless1 hproperconditionsThereforereportedtime-cost-effectiveoneemployedsurface-enhancedscatteringsubstratesinvestigatedindividuallyInterestinglynanoparticlesexhibitpronouncedsignalsprobemoleculesmaximumfactor17 × 10ascribedplasmoncouplingnanoplatenanoparticleontoitRapidSynthesisNanoplatesMicroscaledEdgeLengthHighYieldApplication

Similar Articles

Cited By