Encapsulation of Metal Nanoparticle Catalysts Within Mesoporous Zeolites and Their Enhanced Catalytic Performances: A Review.

Dongdong Xu, Hao Lv, Ben Liu
Author Information
  1. Dongdong Xu: Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China.
  2. Hao Lv: Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China.
  3. Ben Liu: Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China.

Abstract

Metal nanoparticles (NPs) exhibit desired activities in various catalytic reactions. However, the aggregation and sintering of metal NPs usually cause the loss of catalytic performance in practical reaction processes. Encapsulation of catalytically active metal NPs on/within a high-surface-area inorganic support partially resolve such concerns. Microporous zeolites, owing to their rigid frameworks and porous structural features, have been considered as one of ideal inorganic supports. Metal NPs can be easily encapsulated and stabilized within zeolitic frameworks to prevent unwished aggregation during the catalysis. Unfortunately, sole microporous nanochannels (generally <1 nm) in conventional zeolites are not easy to be accessed. The introduction of another set of nanochannel (e.g., mesopore), known as mesoporous zeolites, can greatly improve the mass-transfer efficiency, which is structurally beneficial for most catalytic reactions. The coexistence of micropores and mesopores in inorganic supports provides the synergetic advantages of both fine confinement effect for metal NPs and easy diffusion for organic reactants/intermediates/products. This review focuses on the recent advances in the design and synthesis of mesoporous zeolites-encapsulated metal NP catalysts as well as their desired catalytic performances (activity and stability) in organic reactions. We first discuss the advantages of mesoporous zeolites as the supports and present general strategies for the construction of mesoporous zeolites. Then, the preparation methods on how to encapsulate NP catalysts within both microporous and mesoporous zeolites are clearly demonstrated. Third, some recent important cases on catalytic applications are presented to verify structural advantages of mesoporous zeolite supports. Within the conclusion, the perspectives on future developments in metal NP catalysts encapsulated within mesoporous zeolites are lastly discussed.

Keywords

References

  1. J Am Chem Soc. 2011 Aug 17;133(32):12390-3 [PMID: 21766863]
  2. Chemistry. 2005 Aug 19;11(17):4983-94 [PMID: 15968702]
  3. Chem Rev. 2016 Sep 28;116(18):10414-72 [PMID: 27367000]
  4. Chem Rev. 1997 Oct 1;97(6):2373-2420 [PMID: 11848903]
  5. Sci Total Environ. 2008 Aug 1;400(1-3):396-414 [PMID: 18715626]
  6. Chem Mater. 2018 May 22;30(10):3177-3198 [PMID: 29861546]
  7. Angew Chem Int Ed Engl. 2005 Dec 9;44(48):7852-72 [PMID: 16304662]
  8. Phys Chem Chem Phys. 2010 Nov 7;12(41):13499-510 [PMID: 20820585]
  9. Chem Soc Rev. 2013 May 7;42(9):3956-76 [PMID: 23132427]
  10. J Am Chem Soc. 2011 Dec 28;133(51):20672-5 [PMID: 22087502]
  11. Chem Commun (Camb). 2014 Feb 21;50(15):1824-6 [PMID: 24398573]
  12. Nanoscale. 2017 May 18;9(19):6380-6390 [PMID: 28452385]
  13. Chem Soc Rev. 2013 May 7;42(9):3689-707 [PMID: 23460052]
  14. Angew Chem Int Ed Engl. 1998 Aug 17;37(15):2046-2067 [PMID: 29711045]
  15. Acc Chem Res. 2001 Mar;34(3):181-90 [PMID: 11263876]
  16. Chem Soc Rev. 2013 May 7;42(9):4004-35 [PMID: 23138888]
  17. Chem Soc Rev. 2012 Aug 7;41(15):5262-84 [PMID: 22695806]
  18. Small. 2006 Feb;2(2):182-93 [PMID: 17193018]
  19. Angew Chem Int Ed Engl. 2016 Aug 1;55(32):9178-82 [PMID: 27346582]
  20. J Am Chem Soc. 2016 Apr 13;138(14):4718-21 [PMID: 27014928]
  21. Angew Chem Int Ed Engl. 2004 Feb 1;43(5):597-601 [PMID: 14743414]
  22. Adv Colloid Interface Sci. 2004 Jun 30;110(1-2):49-74 [PMID: 15142823]
  23. Chem Soc Rev. 2008 Nov;37(11):2530-42 [PMID: 18949124]
  24. Chem Rev. 2007 Jul;107(7):2821-60 [PMID: 17580976]
  25. Chem Soc Rev. 2009 Feb;38(2):481-94 [PMID: 19169462]
  26. Nature. 2002 Jun 20;417(6891):813-21 [PMID: 12075343]
  27. Chem Rev. 2016 Nov 23;116(22):14056-14119 [PMID: 27712067]
  28. J Am Chem Soc. 2014 Feb 12;136(6):2503-10 [PMID: 24450997]
  29. Chem Rev. 2014 Jul 23;114(14):7268-316 [PMID: 24844459]
  30. Chem Rev. 2006 Mar;106(3):896-910 [PMID: 16522012]
  31. Nat Chem. 2012 Feb 19;4(4):310-6 [PMID: 22437717]
  32. Acc Chem Res. 2013 Aug 20;46(8):1720-30 [PMID: 23634641]
  33. Angew Chem Int Ed Engl. 2010 May 3;49(20):3504-7 [PMID: 20391442]
  34. Acc Chem Res. 2013 Aug 20;46(8):1673-81 [PMID: 23252628]
  35. Chem Soc Rev. 2016 Jun 13;45(12):3353-76 [PMID: 26477329]
  36. Chem Soc Rev. 2010 May;39(5):1780-804 [PMID: 20419219]
  37. Acc Chem Res. 2003 Aug;36(8):638-43 [PMID: 12924961]
  38. Angew Chem Int Ed Engl. 2003 Nov 3;42(42):5240-3 [PMID: 14601183]
  39. J Am Chem Soc. 2002 Apr 24;124(16):4228-9 [PMID: 11960449]
  40. Nature. 2009 Sep 10;461(7261):246-9 [PMID: 19741706]
  41. Angew Chem Int Ed Engl. 1999 Jun 14;38(12):1698-1712 [PMID: 29711186]
  42. ACS Nano. 2016 Aug 23;10(8):7401-8 [PMID: 27429013]
  43. Chem Soc Rev. 2013 May 7;42(9):3876-93 [PMID: 23139061]
  44. Nat Mater. 2017 Jan;16(1):132-138 [PMID: 27669051]
  45. Angew Chem Int Ed Engl. 2007;46(38):7251-4 [PMID: 17657750]
  46. J Am Chem Soc. 2012 Mar 14;134(10):4557-60 [PMID: 22380406]
  47. J Am Chem Soc. 2015 Sep 16;137(36):11832-7 [PMID: 26312441]
  48. J Phys Chem B. 2005 Jul 7;109(26):12663-76 [PMID: 16852568]
  49. Chem Soc Rev. 2014 Nov 21;43(22):7548-61 [PMID: 24671148]
  50. Adv Mater. 2011 Jun 17;23(22-23):2602-15 [PMID: 21495091]
  51. Chemistry. 2012 Jun 18;18(25):7671-4 [PMID: 22615177]
  52. Chemistry. 2018 Feb 21;24(11):2565-2569 [PMID: 29315889]
  53. Chemistry. 2015 Jan 26;21(5):1928-37 [PMID: 25424473]
  54. J Am Chem Soc. 2016 Jun 22;138(24):7484-7 [PMID: 27248462]
  55. Nature. 2001 Jul 12;412(6843):169-72 [PMID: 11449269]
  56. Science. 2015 May 29;348(6238):aaa8075 [PMID: 26023142]
  57. Chem Soc Rev. 2015 Dec 21;44(24):8877-903 [PMID: 26567526]
  58. Angew Chem Int Ed Engl. 2014 Nov 10;53(46):12513-6 [PMID: 25196739]
  59. Science. 2011 Jul 15;333(6040):328-32 [PMID: 21764745]
  60. ChemSusChem. 2009;2(1):18-45 [PMID: 19142903]
  61. Angew Chem Int Ed Engl. 2015 Sep 7;54(37):10848-51 [PMID: 26218555]
  62. J Am Chem Soc. 2012 Oct 17;134(41):16987-90 [PMID: 23030399]
  63. J Am Chem Soc. 2001 Oct 24;123(42):10411-2 [PMID: 11604002]
  64. J Am Chem Soc. 2004 Jan 14;126(1):250-8 [PMID: 14709090]
  65. Science. 1998 Jan 23;279(5350):548-52 [PMID: 9438845]
  66. Angew Chem Int Ed Engl. 2015 Jul 27;54(31):9061-5 [PMID: 26073465]
  67. Science. 2012 Jun 29;336(6089):1684-7 [PMID: 22745424]
  68. Nat Commun. 2018 Mar 26;9(1):1231 [PMID: 29581429]
  69. J Phys Chem B. 2005 Feb 17;109(6):2192-202 [PMID: 16851211]
  70. J Am Chem Soc. 2001 Aug 8;123(31):7584-93 [PMID: 11480979]
  71. Chem Commun (Camb). 2018 Mar 27;54(26):3274-3277 [PMID: 29537028]
  72. Chem Rev. 2018 May 23;118(10):4981-5079 [PMID: 29658707]
  73. Angew Chem Int Ed Engl. 2010 Jul 5;49(29):4981-5 [PMID: 20512832]
  74. J Am Chem Soc. 2010 Jul 7;132(26):9129-37 [PMID: 20536236]
  75. Nat Mater. 2005 May;4(5):366-77 [PMID: 15867920]
  76. Nat Commun. 2014 Jun 24;5:4262 [PMID: 24957696]
  77. J Am Chem Soc. 2012 Aug 29;134(34):13926-9 [PMID: 22888976]
  78. Angew Chem Int Ed Engl. 2017 Aug 7;56(33):9747-9751 [PMID: 28503914]

Word Cloud

Created with Highcharts 10.0.0mesoporouszeolitesmetalNPscatalyticsupportsMetalreactionsinorganicwithinadvantagesNPcatalystsdesiredaggregationEncapsulationframeworksstructuralcanencapsulatedmicroporouseasyorganicrecentzeoliteWithinnanoparticlesexhibitactivitiesvariousHoweversinteringusuallycauselossperformancepracticalreactionprocessescatalyticallyactiveon/withinhigh-surface-areasupportpartiallyresolveconcernsMicroporousowingrigidporousfeaturesconsideredoneidealeasilystabilizedzeoliticpreventunwishedcatalysisUnfortunatelysolenanochannelsgenerally<1nmconventionalaccessedintroductionanothersetnanochannelegmesoporeknowngreatlyimprovemass-transferefficiencystructurallybeneficialcoexistencemicroporesmesoporesprovidessynergeticfineconfinementeffectdiffusionreactants/intermediates/productsreviewfocusesadvancesdesignsynthesiszeolites-encapsulatedwellperformancesactivitystabilityfirstdiscusspresentgeneralstrategiesconstructionpreparationmethodsencapsulateclearlydemonstratedThirdimportantcasesapplicationspresentedverifyconclusionperspectivesfuturedevelopmentslastlydiscussedNanoparticleCatalystsMesoporousZeolitesEnhancedCatalyticPerformances:Reviewmasstransfernanoparticlenanoconfinement

Similar Articles

Cited By