Virtual reality experiences, embodiment, videogames and their dimensions in neurorehabilitation.

Daniel Perez-Marcos
Author Information
  1. Daniel Perez-Marcos: MindMaze SA, Lausanne, Switzerland. daniel.perez@mindmaze.ch. ORCID

Abstract

BACKGROUND: In the context of stroke rehabilitation, new training approaches mediated by virtual reality and videogames are usually discussed and evaluated together in reviews and meta-analyses. This represents a serious confounding factor that is leading to misleading, inconclusive outcomes in the interest of validating these new solutions.
MAIN BODY: Extending existing definitions of virtual reality, in this paper I put forward the concept of virtual reality experience (VRE), generated by virtual reality systems (VRS; i.e. a group of variable technologies employed to create a VRE). Then, I review the main components composing a VRE, and how they may purposely affect the mind and body of participants in the context of neurorehabilitation. In turn, VRS are not anymore exclusive from VREs but are currently used in videogames and other human-computer interaction applications in different domains. Often, these other applications receive the name of virtual reality applications as they use VRS. However, they do not necessarily create a VRE. I put emphasis on exposing fundamental similarities and differences between VREs and videogames for neurorehabilitation. I also recommend describing and evaluating the specific features encompassing the intervention rather than evaluating virtual reality or videogames as a whole.
CONCLUSION: This disambiguation between VREs, VRS and videogames should help reduce confusion in the field. This is important for databases searches when looking for specific studies or building metareviews that aim at evaluating the efficacy of technology-mediated interventions.

Keywords

References

  1. Neurosci Biobehav Rev. 2017 Jul;78:34-43 [PMID: 28442405]
  2. Neuroreport. 2014 Dec 3;25(17):1356-61 [PMID: 25304498]
  3. Neuron. 2016 Apr 20;90(2):214-8 [PMID: 27100194]
  4. Top Stroke Rehabil. 2007 Mar-Apr;14(2):52-61 [PMID: 17517575]
  5. Neurorehabil Neural Repair. 2017 Jul;31(7):623-637 [PMID: 28675943]
  6. Top Stroke Rehabil. 2015 Aug;22(4):299-305 [PMID: 26258455]
  7. Eur J Neurosci. 2013 May;37(9):1441-7 [PMID: 23414211]
  8. J Diabetes Sci Technol. 2011 Mar 01;5(2):283-92 [PMID: 21527095]
  9. J Neuroeng Rehabil. 2015 Jun 09;12:50 [PMID: 26055406]
  10. Restor Neurol Neurosci. 2016 May 2;34(3):455-63 [PMID: 27163250]
  11. J Neuroeng Rehabil. 2014 Jul 03;11:108 [PMID: 24996956]
  12. Mol Psychiatry. 2014 Feb;19(2):265-71 [PMID: 24166407]
  13. Am Psychol. 2014 Jan;69(1):66-78 [PMID: 24295515]
  14. Front Psychol. 2017 Jun 30;8:1125 [PMID: 28713323]
  15. Nature. 1998 Feb 19;391(6669):756 [PMID: 9486643]
  16. PLoS One. 2015 Feb 06;10(2):e0117178 [PMID: 25658822]
  17. Lancet Neurol. 2016 Sep;15(10):1019-27 [PMID: 27365261]
  18. Phys Ther. 2015 Mar;95(3):415-25 [PMID: 25212522]
  19. Front Neurol. 2012 Jul 10;3:110 [PMID: 22787454]
  20. Front Hum Neurosci. 2015 Mar 24;9:141 [PMID: 25852524]
  21. Comput Intell Neurosci. 2007;:79642 [PMID: 18368142]
  22. Gait Posture. 2014 Apr;39(4):1062-8 [PMID: 24560691]
  23. Front Hum Neurosci. 2008 Aug 20;2:6 [PMID: 18958207]
  24. J Neuroeng Rehabil. 2016 Aug 09;13(1):74 [PMID: 27506203]
  25. Science. 2007 Aug 24;317(5841):1096-9 [PMID: 17717189]
  26. NeuroRehabilitation. 2009;25(1):29-44 [PMID: 19713617]
  27. Front Hum Neurosci. 2016 Jun 24;10:284 [PMID: 27445739]
  28. J Neuroeng Rehabil. 2004 Dec 20;1(1):12 [PMID: 15679949]
  29. PLoS One. 2014 Mar 28;9(3):e93318 [PMID: 24681826]
  30. Sci Am. 2016 Jul;315(1):26-31 [PMID: 27348376]
  31. Nat Rev Neurosci. 2011 Nov 03;12(12):752-62 [PMID: 22048061]
  32. Nat Rev Neurosci. 2005 Apr;6(4):332-9 [PMID: 15803164]
  33. Neurorehabil Neural Repair. 2013 Feb;27(2):99-109 [PMID: 22798152]
  34. Vision Res. 2015 Sep;114:173-87 [PMID: 25917239]
  35. Neuron. 2015 Oct 7;88(1):145-66 [PMID: 26447578]
  36. Neurology. 2017 Oct 31;89(18):1894-1903 [PMID: 28986411]
  37. Restor Neurol Neurosci. 2009;27(3):209-23 [PMID: 19531876]
  38. Int J Stroke. 2017 Jul;12(5):451-461 [PMID: 28697709]
  39. Nature. 2013 Sep 5;501(7465):97-101 [PMID: 24005416]
  40. Neuropsychologia. 2017 Feb;96:61-69 [PMID: 28077329]
  41. J Neuroeng Rehabil. 2015 May 10;12:46 [PMID: 25957577]
  42. Psychol Sci. 2013 Dec;24(12):2445-53 [PMID: 24104506]
  43. Philos Trans R Soc Lond B Biol Sci. 2009 Dec 12;364(1535):3549-57 [PMID: 19884149]
  44. Dev Neurorehabil. 2013 Dec;16(6):398-409 [PMID: 23617243]
  45. Cochrane Database Syst Rev. 2017 Nov 20;11:CD008349 [PMID: 29156493]
  46. Psychol Med. 2017 Oct;47(14):2393-2400 [PMID: 28325167]
  47. Exp Brain Res. 2014 Mar;232(3):875-87 [PMID: 24337257]
  48. Eur J Phys Rehabil Med. 2012 Jun;48(2):313-8 [PMID: 22522432]

MeSH Term

Humans
Stroke Rehabilitation
User-Computer Interface
Video Games
Virtual Reality

Word Cloud

Created with Highcharts 10.0.0realityvideogamesvirtualVirtualVREVRSneurorehabilitationVREsapplicationscontextnewputexperiencecreateevaluatingspecificembodimentBACKGROUND:strokerehabilitationtrainingapproachesmediatedusuallydiscussedevaluatedtogetherreviewsmeta-analysesrepresentsseriousconfoundingfactorleadingmisleadinginconclusiveoutcomesinterestvalidatingsolutionsMAINBODY:Extendingexistingdefinitionspaperforwardconceptgeneratedsystemsiea groupvariabletechnologiesemployedreviewmaincomponentscomposingmaypurposelyaffectmindbodyparticipantsturnanymoreexclusivecurrentlyusedhuman-computerinteractiondifferentdomainsOftenreceivenameuseHowevernecessarilyemphasisexposingfundamentalsimilaritiesdifferencesalsorecommenddescribingfeaturesencompassinginterventionratherevaluating virtualwholeCONCLUSION:disambiguationhelpreduceconfusionfieldimportantdatabasessearcheslookingstudiesbuildingmetareviewsaimefficacytechnology-mediatedinterventionsexperiencesdimensionsNeurorehabilitationVideogamessystem

Similar Articles

Cited By (36)