A tissue communication network coordinating innate immune response during muscle stress.

Nicole Green, Justin Walker, Alexandria Bontrager, Molly Zych, Erika R Geisbrecht
Author Information
  1. Nicole Green: Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA.
  2. Justin Walker: Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA.
  3. Alexandria Bontrager: Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA.
  4. Molly Zych: Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA.
  5. Erika R Geisbrecht: Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA geisbrechte@ksu.edu. ORCID

Abstract

Complex tissue communication networks function throughout an organism's lifespan to maintain tissue homeostasis. Using the genetic model , we have defined a network of immune responses that are activated following the induction of muscle stresses, including hypercontraction, detachment and oxidative stress. Of these stressors, loss of the genes that cause muscle detachment produced the strongest levels of JAK-STAT activation. In one of these mutants, (), we also observe hemocyte recruitment and the accumulation of melanin at muscle attachment sites (MASs), indicating a broad involvement of innate immune responses upon muscle detachment. Loss of results in pathogen-independent Toll signaling in the fat body and increased expression of the Toll-dependent antimicrobial peptide Drosomycin. Interestingly, genetic interactions between and various Toll pathway components enhance muscle detachment. Finally, we show that JAK-STAT and Toll signaling are capable of reciprocal activation in larval tissues. We propose a model of tissue communication for the integration of immune responses at the local and systemic level in response to altered muscle physiology.

Keywords

References

  1. Scand J Immunol. 2014 Jun;79(6):377-85 [PMID: 24673174]
  2. Dev Biol. 2006 Jul 1;295(1):156-63 [PMID: 16690050]
  3. EMBO Rep. 2015 Dec;16(12):1664-72 [PMID: 26412855]
  4. Cell Microbiol. 2005 Mar;7(3):335-50 [PMID: 15679837]
  5. J Cell Sci. 2017 Jun 1;130(11):1917-1928 [PMID: 28424232]
  6. Curr Opin Cell Biol. 2014 Oct;30:1-8 [PMID: 24799191]
  7. Neurology. 2003 Mar 25;60(6):993-7 [PMID: 12654966]
  8. J Mol Med (Berl). 2008 Jul;86(7):747-59 [PMID: 18246321]
  9. J Cell Biol. 2004 Mar 29;164(7):1045-54 [PMID: 15051736]
  10. EMBO J. 1995 Jun 15;14(12):2857-65 [PMID: 7796812]
  11. FEBS Lett. 2006 Oct 2;580(22):5406-10 [PMID: 16996061]
  12. Gene Expr Patterns. 2007 Jan;7(3):323-31 [PMID: 17008134]
  13. Mediators Inflamm. 2015;2015:369286 [PMID: 25948885]
  14. Development. 1998 May;125(9):1679-89 [PMID: 9521906]
  15. Sci Adv. 2015 Oct 16;1(9):e1500228 [PMID: 26601278]
  16. EMBO Rep. 2000 Oct;1(4):347-52 [PMID: 11269501]
  17. Genetics. 2006 Sep;174(1):253-63 [PMID: 16816412]
  18. Curr Opin Immunol. 2014 Feb;26:147-56 [PMID: 24556412]
  19. Development. 2011 Dec;138(24):5379-91 [PMID: 22071105]
  20. Fly (Austin). 2009 Jan-Mar;3(1):105-11 [PMID: 19164947]
  21. Free Radic Biol Med. 2006 Oct 15;41(8):1338-50 [PMID: 17015180]
  22. J Immunol. 2011 Jan 15;186(2):649-56 [PMID: 21209287]
  23. EMBO J. 1995 Feb 1;14(3):536-45 [PMID: 7859742]
  24. Biomed Res Int. 2014;2014:438675 [PMID: 25028653]
  25. Elife. 2016 Nov 22;5: [PMID: 27871362]
  26. EMBO J. 2002 Jun 3;21(11):2568-79 [PMID: 12032070]
  27. Annu Rev Immunol. 2007;25:697-743 [PMID: 17201680]
  28. Immunity. 2000 May;12(5):569-80 [PMID: 10843389]
  29. Development. 2003 Oct;130(20):4955-62 [PMID: 12930778]
  30. FASEB J. 2003 Mar;17(3):386-96 [PMID: 12631578]
  31. Development. 1998 May;125(10):1909-20 [PMID: 9550723]
  32. Curr Top Dev Biol. 2011;96:85-119 [PMID: 21621068]
  33. Curr Biol. 2000 Mar 9;10(5):269-72 [PMID: 10712908]
  34. Gene. 2002 Jul 10;294(1-2):77-86 [PMID: 12234669]
  35. Front Plant Sci. 2014 Jul 11;5:342 [PMID: 25071815]
  36. Proc Natl Acad Sci U S A. 2013 May 7;110(19):E1752-60 [PMID: 23613578]
  37. Genetics. 2007 Sep;177(1):295-306 [PMID: 17603127]
  38. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):810-4 [PMID: 1899484]
  39. J Insect Physiol. 2012 Oct;58(10):1376-81 [PMID: 22885376]
  40. Acta Myol. 2011 Jun;30(1):16-23 [PMID: 21842588]
  41. FASEB J. 1991 Dec;5(15):3037-46 [PMID: 1835945]
  42. J Insect Physiol. 2016 Oct - Nov;93-94:11-17 [PMID: 27430166]
  43. Inflamm Regen. 2016 Sep 5;36:14 [PMID: 29259687]
  44. Cold Spring Harb Perspect Biol. 2009 Dec;1(6):a000232 [PMID: 20457557]
  45. J Insect Physiol. 2008 Mar;54(3):586-92 [PMID: 18222466]
  46. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14614-9 [PMID: 9405661]
  47. Immunity. 2012 Apr 20;36(4):635-45 [PMID: 22483800]
  48. Free Radic Biol Med. 2011 Oct 15;51(8):1575-82 [PMID: 21839827]
  49. Mech Dev. 1996 Nov;60(1):109-23 [PMID: 9025065]
  50. Fly (Austin). 2016 Jul 2;10(3):115-22 [PMID: 27116253]
  51. Sci Transl Med. 2015 Aug 5;7(299):299rv4 [PMID: 26246170]
  52. Trends Immunol. 2017 Oct;38(10):705-718 [PMID: 28734635]
  53. Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):15000-5 [PMID: 12415109]
  54. Methods Mol Biol. 2013;1037:449-61 [PMID: 24029952]
  55. PM R. 2009 Aug;1(8):755-68 [PMID: 19695529]
  56. Am J Physiol Regul Integr Comp Physiol. 2010 May;298(5):R1173-87 [PMID: 20219869]
  57. Dev Comp Immunol. 2012 Apr;36(4):638-47 [PMID: 22085781]
  58. Hum Mol Genet. 2014 Dec 15;23(24):6458-69 [PMID: 25027324]
  59. Curr Biol. 2017 Jul 10;27(13):1941-1955.e6 [PMID: 28669758]
  60. Dev Cell. 2006 Jan;10(1):45-55 [PMID: 16399077]
  61. J Biol Chem. 2006 Sep 22;281(38):28097-104 [PMID: 16861233]
  62. J Biomed Biotechnol. 2009;2009:315423 [PMID: 19888430]
  63. Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4078-83 [PMID: 12642658]
  64. Rare Dis. 2015 Feb 23;3(1):e1010966 [PMID: 26481612]
  65. J Cell Biol. 1996 Mar;132(6):1061-77 [PMID: 8601585]
  66. Cell. 1996 Sep 20;86(6):973-83 [PMID: 8808632]
  67. Nat Rev Immunol. 2010 Dec;10(12):826-37 [PMID: 21088683]
  68. Neurogenetics. 1998 Dec;2(1):61-72 [PMID: 9933302]
  69. Int Rev Immunol. 2008;27(5):375-87 [PMID: 18853344]
  70. J Mol Med (Berl). 2008 Oct;86(10):1113-26 [PMID: 18574572]
  71. Nat Rev Rheumatol. 2013 Jul;9(7):438-42 [PMID: 23478496]
  72. Nat Rev Immunol. 2014 Dec;14(12):796-810 [PMID: 25421701]
  73. Dis Model Mech. 2016 Jun 1;9(6):697-705 [PMID: 27101844]
  74. Development. 1993 Jun;118(2):401-15 [PMID: 8223268]
  75. Immunol Lett. 2005 Oct 15;101(1):108-11 [PMID: 15964636]
  76. G3 (Bethesda). 2013 Sep 04;3(9):1607-16 [PMID: 23893746]
  77. J Clin Invest. 2007 Apr;117(4):889-901 [PMID: 17380205]
  78. Front Cell Infect Microbiol. 2014 Jan 09;3:113 [PMID: 24409421]
  79. Development. 2003 Jun;130(12):2611-21 [PMID: 12736206]
  80. Front Immunol. 2012 Sep 17;3:287 [PMID: 23060876]
  81. Genetics. 2008 Sep;180(1):253-67 [PMID: 18757933]
  82. Nat Genet. 1998 Mar;18(3):231-6 [PMID: 9500544]
  83. PLoS One. 2014 Aug 07;9(8):e102568 [PMID: 25102059]
  84. PLoS Pathog. 2014 May 01;10(5):e1004067 [PMID: 24788090]
  85. J Biol Chem. 2006 Mar 24;281(12):8100-9 [PMID: 16415344]
  86. Dis Model Mech. 2017 Mar 1;10(3):271-281 [PMID: 28250052]
  87. Dev Biol. 1996 Nov 25;180(1):353-64 [PMID: 8948598]
  88. Skelet Muscle. 2013 Jun 07;3(1):13 [PMID: 23758833]
  89. Genetics. 2016 Nov;204(3):1075-1087 [PMID: 27585844]
  90. J Cell Sci. 2004 Apr 1;117(Pt 9):1795-805 [PMID: 15075240]
  91. Dis Model Mech. 2013 Nov;6(6):1339-52 [PMID: 24092876]

Grants

  1. P20 GM103418/NIGMS NIH HHS
  2. R01 AR060788/NIAMS NIH HHS
  3. R21 AR073373/NIAMS NIH HHS
  4. R56 AR060788/NIAMS NIH HHS

MeSH Term

Animals
Blood Proteins
Drosophila Proteins
Drosophila melanogaster
Epistasis, Genetic
Hemocytes
Homeostasis
Immunity, Innate
Muscles
Toll-Like Receptors

Chemicals

Blood Proteins
Drosophila Proteins
Toll-Like Receptors
fon protein, Drosophila

Word Cloud

Created with Highcharts 10.0.0muscletissuecommunicationimmunedetachmentresponsesTollgeneticmodelnetworkstressJAK-STATactivationinnatesignalingresponseComplexnetworksfunctionthroughoutorganism'slifespanmaintainhomeostasisUsingdefinedactivatedfollowinginductionstressesincludinghypercontractionoxidativestressorslossgenescauseproducedstrongestlevelsonemutantsalsoobservehemocyterecruitmentaccumulationmelaninattachmentsitesMASsindicatingbroadinvolvementuponLossresultspathogen-independentfatbodyincreasedexpressionToll-dependentantimicrobialpeptideDrosomycinInterestinglyinteractionsvariouspathwaycomponentsenhanceFinallyshowcapablereciprocallarvaltissuesproposeintegrationlocalsystemiclevelalteredphysiologycoordinatingDrosophilaInnateimmunityMuscleTissue

Similar Articles

Cited By