Analysis of Bacterial Communities in White Clover Seeds via High-Throughput Sequencing of 16S rRNA Gene.

Wenna Gao, Chunsheng Zheng, Yahong Lei, Weigang Kuang
Author Information
  1. Wenna Gao: Beijing Inspection and Quarantine Technology Center, Beijing, 100026, China.
  2. Chunsheng Zheng: Beijing Inspection and Quarantine Technology Center, Beijing, 100026, China.
  3. Yahong Lei: The Talents Exchange and Development Service Centre of Wuwei City, Wuwei, 733000, China.
  4. Weigang Kuang: College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China. kwing23@126.com.

Abstract

White clover widely cultivated in China is one of the most important perennial leguminous forages in temperate and subtropical regions. There is a large quantity of white clover seeds imported into China each year for demands of high-quality grass seeds. Seedborne diseases may cause significant economic losses. DNA sequencing technologies allow for the direct estimation of microbial community diversity, avoiding culture-based biases. Therefore, we used 16S rRNA gene sequencing to investigate the bacterial communities in white clover seeds collected from four different countries. The results showed that a total of 484,715 clean reads were obtained for further subsequent analysis. In total, 341, 340, 382, and 297 operational taxonomic units were obtained at 3% distance cutoff in DB, MB, TB, and XB samples, respectively. The richness indexes revealed that TB sample from Argentina had the highest bacterial richness in four samples. Our results demonstrated that Proteobacteria was the dominant phyla in MB, TB, and XB; however, Bacteroidetes was the dominant phyla in DB. The dominant genus of DB was Prevotella (11.9%), while Sphingomonas was the major genus of MB (46.9%), TB (55.08%), and XB (47.2%) samples. These results provide useful information for seedborne diseases and transmission of bacteria from seed to seedling.

References

  1. Appl Environ Microbiol. 2002 May;68(5):2198-208 [PMID: 11976089]
  2. Appl Environ Microbiol. 2002 Jun;68(6):3114-20 [PMID: 12039774]
  3. Appl Environ Microbiol. 2002 Oct;68(10):4758-63 [PMID: 12324317]
  4. Lett Appl Microbiol. 2002;35(4):331-7 [PMID: 12358698]
  5. Appl Environ Microbiol. 2004 Apr;70(4):1999-2012 [PMID: 15066790]
  6. Nat Rev Microbiol. 2005 Jun;3(6):510-6 [PMID: 15931168]
  7. Can J Microbiol. 2006 Sep;52(9):848-56 [PMID: 17110977]
  8. Annu Rev Phytopathol. 2007;45:371-97 [PMID: 17474875]
  9. FEMS Microbiol Lett. 2008 Jan;278(1):1-9 [PMID: 18034833]
  10. FEMS Microbiol Lett. 2008 Oct;287(1):8-14 [PMID: 18710397]
  11. Nucleic Acids Res. 2009 Jan;37(Database issue):D141-5 [PMID: 19004872]
  12. FEMS Microbiol Lett. 2009 Apr;293(1):11-9 [PMID: 19222576]
  13. FEMS Microbiol Ecol. 2004 Feb 1;47(2):161-77 [PMID: 19712332]
  14. Appl Environ Microbiol. 2009 Dec;75(23):7537-41 [PMID: 19801464]
  15. Bioinformatics. 2010 Oct 1;26(19):2460-1 [PMID: 20709691]
  16. Appl Environ Microbiol. 2011 Apr;77(7):2264-74 [PMID: 21317261]
  17. Can J Microbiol. 2012 Jan;58(1):67-80 [PMID: 22220581]
  18. BMC Bioinformatics. 2012 Feb 14;13:31 [PMID: 22333067]
  19. Appl Microbiol Biotechnol. 2013 Mar;97(6):2681-90 [PMID: 22555912]
  20. Arch Microbiol. 2012 Dec;194(12):1001-12 [PMID: 22892578]
  21. Appl Environ Microbiol. 2012 Dec;78(23):8388-402 [PMID: 23001675]
  22. Curr Microbiol. 2013 Aug;67(2):130-7 [PMID: 23471692]
  23. FEMS Microbiol Lett. 2013 Sep;346(2):146-54 [PMID: 23859062]
  24. Nat Methods. 2013 Oct;10(10):996-8 [PMID: 23955772]
  25. Appl Microbiol Biotechnol. 2014 Mar;98(6):2657-65 [PMID: 24068333]
  26. Microbiology. 2014 Mar;160(Pt 3):556-66 [PMID: 24421406]
  27. J Appl Microbiol. 2014 May;116(5):1094-105 [PMID: 24447831]
  28. J Basic Microbiol. 2015 Apr;55(4):504-8 [PMID: 25515303]
  29. Environ Sci Pollut Res Int. 2015 Aug;22(16):12605-14 [PMID: 25911286]
  30. J Hum Lact. 2015 Aug;31(3):406-15 [PMID: 25948578]
  31. Curr Microbiol. 2016 Jan;72(1):68-74 [PMID: 26446550]
  32. J Hazard Mater. 2016 Sep 5;315:61-9 [PMID: 27179201]

Grants

  1. GJJ170294/Foundation of the Educational Department in Jiangxi Province
  2. 2014IK005/National Quality Supervision and Inspection Bureau of Science and Technology Planning Project

MeSH Term

Argentina
Bacteria
Bacterial Typing Techniques
Bacteroidetes
DNA, Bacterial
Denmark
High-Throughput Nucleotide Sequencing
Medicago
Microbiota
New Zealand
Phylogeny
Proteobacteria
RNA, Ribosomal, 16S
Seeds
United States

Chemicals

DNA, Bacterial
RNA, Ribosomal, 16S

Word Cloud

Created with Highcharts 10.0.0TBcloverseedsresultsDBMBXBsamplesdominantWhiteChinawhitediseasessequencing16SrRNAbacterialfourtotalobtainedrichnessphylagenus9%widelycultivatedoneimportantperennialleguminousforagestemperatesubtropicalregionslargequantityimportedyeardemandshigh-qualitygrassSeedbornemaycausesignificanteconomiclossesDNAtechnologiesallowdirectestimationmicrobialcommunitydiversityavoidingculture-basedbiasesThereforeusedgeneinvestigatecommunitiescollecteddifferentcountriesshowed484715cleanreadssubsequentanalysis341340382297operationaltaxonomicunits3%distancecutoffrespectivelyindexesrevealedsampleArgentinahighestdemonstratedProteobacteriahoweverBacteroidetesPrevotella11Sphingomonasmajor465508%472%provideusefulinformationseedbornetransmissionbacteriaseedseedlingAnalysisBacterialCommunitiesCloverSeedsviaHigh-ThroughputSequencingGene

Similar Articles

Cited By