Evolved tolerance to freshwater salinization in zooplankton: life-history trade-offs, cross-tolerance and reducing cascading effects.

William D Hintz, Devin K Jones, Rick A Relyea
Author Information
  1. William D Hintz: Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA hintzwd@gmail.com. ORCID
  2. Devin K Jones: Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
  3. Rick A Relyea: Darrin Fresh Water Institute, Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

Abstract

Recent discoveries have documented evolutionary responses to freshwater salinization. We investigated if evolutionary responses to salinization exhibit life-history trade-offs or if they can mitigate ecological impacts such as cascading effects through mechanisms of tolerance and cross-tolerance. We conducted an outdoor mesocosm experiment using populations of -a ubiquitous algal grazer-that were either naive or had previously experienced selection to become more tolerant to sodium chloride (NaCl). During the initial phase of population growth, we discovered that evolved tolerance comes at the cost of slower population growth in the absence of salt. We found evolved populations maintained a tolerance to NaCl approximately 30 generations after the initial discovery. Evolved tolerance to NaCl also conferred cross-tolerance to a high concentration of CaCl (3559 µS cm) and a moderate concentration of MgCl (967 µS cm). A higher concentration of MgCl (2188 µS cm) overwhelmed the cross-tolerance and killed all Tolerance to NaCl did not mitigate NaCl-induced cascades leading to phytoplankton blooms, but cross-tolerance at moderate concentrations of MgCl and high concentrations of CaCl mitigated such cascading effects caused by these two salts. These discoveries highlight the important interplay between ecology and evolution in understanding the full impacts of freshwater salinization.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.

Keywords

Associated Data

figshare | 10.6084/m9.figshare.c.4269401

References

  1. Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1:8649-54 [PMID: 17494741]
  2. Oecologia. 2016 Jun;181(2):487-98 [PMID: 26875187]
  3. Science. 2016 Feb 26;351(6276):914-6 [PMID: 26917752]
  4. Philos Trans R Soc Lond B Biol Sci. 2018 Dec 3;374(1764): [PMID: 30509910]
  5. Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):4453-4458 [PMID: 28396392]
  6. Evol Appl. 2017 Nov 10;10(8):829-838 [PMID: 29151874]
  7. Oecologia. 2017 Aug;184(4):931-942 [PMID: 28717880]
  8. Environ Toxicol Chem. 2017 Jun;36(6):1525-1537 [PMID: 27800634]
  9. Evol Appl. 2013 Nov;6(7):1028-40 [PMID: 24187585]
  10. Evolution. 1998 Apr;52(2):443-453 [PMID: 28568346]
  11. Evol Appl. 2017 Nov 15;11(1):96-111 [PMID: 29302275]
  12. Nat Rev Microbiol. 2010 Apr;8(4):260-71 [PMID: 20208551]
  13. Ecol Appl. 2017 Apr;27(3):833-844 [PMID: 27992971]
  14. PLoS One. 2014 Feb 26;9(2):e90168 [PMID: 24587259]
  15. Ecol Lett. 2012 Aug;15(8):794-802 [PMID: 22583985]
  16. Evol Appl. 2015 Jul;8(6):586-96 [PMID: 26136824]
  17. Philos Trans R Soc Lond B Biol Sci. 2018 Dec 3;374(1764): [PMID: 30509918]
  18. Environ Toxicol Chem. 2013 Apr;32(4):932-6 [PMID: 23322537]
  19. Environ Pollut. 2017 Feb;221:159-167 [PMID: 27939632]
  20. Environ Pollut. 2017 Mar;222:367-373 [PMID: 28065573]
  21. Sci Total Environ. 2014 Apr 1;476-477:634-42 [PMID: 24503334]
  22. Environ Pollut. 2017 Apr;223:409-415 [PMID: 28131472]
  23. Philos Trans R Soc Lond B Biol Sci. 2018 Dec 3;374(1764): [PMID: 30509912]
  24. Ecotoxicology. 2011 May;20(3):543-51 [PMID: 21380529]
  25. Oecologia. 2017 Sep;185(1):147-156 [PMID: 28762176]
  26. Philos Trans R Soc Lond B Biol Sci. 2018 Dec 3;374(1764): [PMID: 30509925]
  27. Oecologia. 2000 Oct;125(2):179-185 [PMID: 24595829]
  28. Environ Sci Technol. 2014 Apr 1;48(7):4078-85 [PMID: 24579768]
  29. Environ Toxicol Chem. 2016 Dec;35(12):3039-3057 [PMID: 27167636]
  30. Environ Pollut. 2013 Feb;173:157-67 [PMID: 23202646]
  31. Environ Pollut. 2016 Aug;215:234-246 [PMID: 27208756]
  32. Ecol Appl. 2008 Apr;18(3):724-34 [PMID: 18488630]
  33. Sci Rep. 2012;2:235 [PMID: 22355748]
  34. Sci Rep. 2016 May 06;6:25543 [PMID: 27150578]
  35. Evol Appl. 2013 Apr 30;6(5):832-841 [PMID: 29387169]
  36. Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13517-20 [PMID: 16157871]
  37. Genetics. 2013 Feb;193(2):539-44 [PMID: 23183667]
  38. Environ Pollut. 2011 Mar;159(3):833-5 [PMID: 21147507]
  39. J Environ Qual. 2006 Oct 27;35(6):2425-32 [PMID: 17071914]

MeSH Term

Animals
Biological Evolution
Daphnia
Fresh Water
Life History Traits
Salinity
Water Pollutants, Chemical
Zooplankton

Chemicals

Water Pollutants, Chemical

Word Cloud

Created with Highcharts 10.0.0salinizationtolerancecross-toleranceNaClfreshwatercascadingeffectsconcentrationµScmMgCldiscoveriesevolutionaryresponseslife-historytrade-offsmitigateecologicalimpactspopulationsinitialpopulationgrowthevolvedsaltEvolvedhighCaClmoderatecascadesconcentrationsRecentdocumentedinvestigatedexhibitcanmechanismsconductedoutdoormesocosmexperimentusing-aubiquitousalgalgrazer-thateithernaivepreviouslyexperiencedselectionbecometolerantsodiumchloridephasediscoveredcomescostslowerabsencefoundmaintainedapproximately30generationsdiscoveryalsoconferred3559967higher2188overwhelmedkilledToleranceNaCl-inducedleadingphytoplanktonbloomsmitigatedcausedtwosaltshighlightimportantinterplayecologyevolutionunderstandingfullThisarticlepartthemeissue'Saltfreshwaters:causesconsequencesfutureprospects'zooplankton:reducingcontemporaryadaptationdeicingglobalchangeroadtrophic

Similar Articles

Cited By