Are fungal strains from salinized streams adapted to salt-rich conditions?

Ana Lúcia Gonçalves, Adriana Carvalho, Felix Bärlocher, Cristina Canhoto
Author Information
  1. Ana Lúcia Gonçalves: CFE, Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal aga@ci.uc.pt. ORCID
  2. Adriana Carvalho: CFE, Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
  3. Felix Bärlocher: Department of Biology, Mt. Allison University, Sackville, New Brunswick, Canada E4L1G7.
  4. Cristina Canhoto: CFE, Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.

Abstract

Anthropogenic salinization of freshwater is a global problem with largely unknown consequences for stream functions. We compared the effects of salt addition (6 g l NaCl) in microcosms on leaf mass loss and microbial parameters in single- and multispecies assemblages of fungal strains (, HELU; , TEMA; , FLCU) isolated from a reference (R) or salinized (S) stream. Fungal growth and interactions were also assessed. Salinization inhibited leaf decomposition and fungal biomass, but no differences were observed between species, strains or species combinations. Sporulation rates in monocultures were not affected by added salt, but differed among species (FLCU > HELU > TEMA), with S strains releasing more conidia. Fungal assemblages did not differ significantly in total conidia production (either between strains or medium salt concentration). HELU was the dominant species, which also had highest growth and most pronounced antagonistic behaviour. Fungal species, irrespective of origin, largely maintained their function in salinized streams. Strains from salt-contaminated streams did not trade-off conidial production for vegetative growth at high salt levels. The expected reduction of fungal diversity and potential changes in nutritional litter quality owing to salinization may impact leaf incorporation into secondary production in streams.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.

Keywords

References

  1. Sci Total Environ. 2012 Jan 15;415:69-78 [PMID: 21802709]
  2. PLoS One. 2012;7(5):e35224 [PMID: 22567097]
  3. Ecol Lett. 2018 Aug;21(8):1191-1199 [PMID: 29869373]
  4. Appl Environ Microbiol. 1993 Feb;59(2):502-7 [PMID: 16348874]
  5. Sci Total Environ. 2014 Apr 1;476-477:634-42 [PMID: 24503334]
  6. Ann N Y Acad Sci. 2011 Mar;1223:58-68 [PMID: 21449965]
  7. Mycologia. 2007 Jan-Feb;99(1):24-32 [PMID: 17663120]
  8. Biol Lett. 2016 Mar;12(3):20151072 [PMID: 26932680]
  9. J Biol Chem. 2008 Mar 21;283(12):7309-13 [PMID: 18256030]
  10. Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13517-20 [PMID: 16157871]
  11. Microb Ecol. 1999 May;37(4):257-262 [PMID: 10341055]
  12. Microb Ecol. 1999 Apr;37(3):163-172 [PMID: 10227874]
  13. Nature. 2012 May 02;486(7401):105-8 [PMID: 22678289]
  14. Sci Total Environ. 2014 Jan 15;468-469:943-9 [PMID: 24080419]
  15. Microb Ecol. 2013 Jul;66(1):30-9 [PMID: 23455433]
  16. Mycologia. 2012 May-Jun;104(3):613-22 [PMID: 22123653]
  17. Ecol Lett. 2005 Nov;8(11):1129-37 [PMID: 21352436]
  18. Sci Total Environ. 2016 Feb 15;544:168-74 [PMID: 26657362]
  19. Microb Ecol. 2010 Jan;59(1):84-93 [PMID: 19629577]
  20. Adv Appl Microbiol. 2003;53:177-211 [PMID: 14696319]
  21. Mar Drugs. 2017 Aug 13;15(8): [PMID: 28805714]
  22. Biometals. 2007 Feb;20(1):93-105 [PMID: 16900400]
  23. Science. 2016 Feb 26;351(6276):914-6 [PMID: 26917752]
  24. ScientificWorldJournal. 2010 May 04;10:760-5 [PMID: 20454756]
  25. Environ Pollut. 2011 Jan;159(1):302-310 [PMID: 20932614]
  26. Sci Total Environ. 2016 Jan 15;541:491-501 [PMID: 26410723]
  27. FEMS Microbiol Rev. 2011 Jul;35(4):620-51 [PMID: 21276025]
  28. Environ Pollut. 2012 Jul;166:144-51 [PMID: 22504538]
  29. Environ Pollut. 2013 Feb;173:157-67 [PMID: 23202646]
  30. Sci Total Environ. 2017 Dec 1;599-600:1638-1645 [PMID: 28535592]
  31. Oecologia. 2011 Aug;166(4):1019-28 [PMID: 21340615]
  32. Mycologia. 2010 Sep-Oct;102(5):1004-11 [PMID: 20943501]
  33. Appl Environ Microbiol. 1998 Feb;64(2):607-12 [PMID: 16349503]
  34. Aquat Toxicol. 2016 Aug;177:425-32 [PMID: 27393920]

MeSH Term

Adaptation, Biological
Ascomycota
Rivers
Salinity
Salts

Chemicals

Salts

Word Cloud

Created with Highcharts 10.0.0saltstrainsspeciesfungalstreamsleafHELUsalinizedFungalgrowthproductionsalinizationlargelyconsequencesstreamassemblagesTEMAFLCUSinteractionsalsodecomposition>conidiaAnthropogenicfreshwaterglobalproblemunknownfunctionscomparedeffectsaddition6glNaClmicrocosmsmasslossmicrobialparameterssingle-multispeciesisolatedreferenceRassessedSalinizationinhibitedbiomassdifferencesobservedcombinationsSporulationratesmonoculturesaffectedaddeddifferedamongreleasingdiffersignificantlytotaleithermediumconcentrationdominanthighestpronouncedantagonisticbehaviourirrespectiveoriginmaintainedfunctionStrainssalt-contaminatedtrade-offconidialvegetativehighlevelsexpectedreductiondiversitypotentialchangesnutritionallitterqualityowingmayimpactincorporationsecondaryThisarticlepartthemeissue'Saltfreshwaters:causesecologicalfutureprospects'adaptedsalt-richconditions?antagonismaquatichyphomycetes

Similar Articles

Cited By