Why are mayflies (Ephemeroptera) lost following small increases in salinity? Three conceptual osmophysiological hypotheses.

Ben J Kefford
Author Information
  1. Ben J Kefford: Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory 2601, Australia ben.kefford@canberra.edu.au. ORCID

Abstract

The salinity of many freshwaters is increasing globally as a result of human activities. Associated with this increase in salinity are losses of Ephemeroptera (mayfly) abundance and richness. The salinity concentrations at which Ephemeroptera decline in nature are lower than their internal salinity or haemolymph osmolality. Many species also suffer substantial mortality in single species laboratory toxicity tests at salinities lower than their internal salinity. These findings are problematic as conventional osmoregulation theory suggests that freshwater animals should not experience stress where external osmolality is greater than haemolymph osmolality. Here I explore three hypotheses to explain salt sensitivity in Ephemeroptera. These conceptual hypotheses are based on the observations that as the external sodium ion (Na) concentration increases so does the Na turnover rate (both uptake and elimination rates increase). Sulphate ([Formula: see text]) uptake in mayflies also increases with increasing external [Formula: see text] although, unlike Na, its rate of increase decreases with increasing external [Formula: see text] The first hypothesis is premised on ion turnover being energetically costly. The first hypothesis proposes that individuals must devote a greater proportion of their energy to ion homeostasis at the expense of other uses including growth and development. Lethal levels of salinity presumably result from individuals not being able to devote enough energy to maintain ion homeostasis without critical loss of other vital functions. The second hypothesis is premised on the uptake of Na exchanged for (an outgoing) H, leading to (localized) loss of pH regulation. The third hypothesis is premised on localized Na toxicity or poisoning with increased Na turnover as salinity increases. None of the proposed hypotheses is without potential problems, yet all are testable, and research effort should be focused at attempting to falsify them.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.

Keywords

Associated Data

figshare | 10.6084/m9.figshare.c.4269410

References

  1. Sci Total Environ. 2012 Jan 15;415:69-78 [PMID: 21802709]
  2. R Soc Open Sci. 2017 Jan 18;4(1):160520 [PMID: 28280549]
  3. Science. 2016 Feb 26;351(6276):914-6 [PMID: 26917752]
  4. Sci Total Environ. 2012 Jan 15;415:61-8 [PMID: 21714988]
  5. Tissue Cell. 1984;16(5):789-803 [PMID: 6515644]
  6. Philos Trans R Soc Lond B Biol Sci. 2018 Dec 3;374(1764): [PMID: 30509915]
  7. J Exp Biol. 2017 Nov 1;220(Pt 21):3997-4006 [PMID: 28860119]
  8. Environ Toxicol Chem. 2013 Feb;32(2):277-87 [PMID: 23147750]
  9. Comp Biochem Physiol C Toxicol Pharmacol. 2001 Dec;130(4):411-23 [PMID: 11738629]
  10. J Exp Biol. 2006 Oct;209(Pt 20):4024-32 [PMID: 17023596]
  11. PLoS One. 2012;7(5):e35224 [PMID: 22567097]
  12. Aquat Toxicol. 2016 Feb;171:20-9 [PMID: 26730725]
  13. Environ Pollut. 2006 Jun;141(3):409-19 [PMID: 16242222]
  14. Environ Toxicol Chem. 2013 Feb;32(2):263-71 [PMID: 23161648]
  15. Comp Biochem Physiol B Biochem Mol Biol. 2003 Dec;136(4):593-620 [PMID: 14662288]
  16. Environ Toxicol Chem. 2015 Jan;34(1):167-72 [PMID: 25307284]
  17. Environ Pollut. 2011 Jan;159(1):302-310 [PMID: 20932614]
  18. J Exp Biol. 2014 Apr 1;217(Pt 7):1180-6 [PMID: 24311815]
  19. Environ Pollut. 2013 Feb;173:157-67 [PMID: 23202646]
  20. Environ Toxicol Chem. 2017 Mar;36(3):576-600 [PMID: 27808448]
  21. Biol Lett. 2016 Mar;12(3):20151072 [PMID: 26932680]
  22. Aquat Toxicol. 2017 Sep;190:62-69 [PMID: 28692867]
  23. Philos Trans R Soc Lond B Biol Sci. 2018 Dec 3;374(1764): [PMID: 30509919]
  24. J Exp Biol. 2000 Feb;203(Pt 4):821-30 [PMID: 10648224]
  25. Environ Pollut. 2005 Apr;134(3):377-83 [PMID: 15620583]
  26. Aquat Toxicol. 2016 Aug;177:425-32 [PMID: 27393920]
  27. Chemosphere. 2015 Nov;139:597-603 [PMID: 24932778]
  28. Environ Toxicol Chem. 2015 Sep;34(9):2126-37 [PMID: 25918877]
  29. Respir Physiol Neurobiol. 2012 Dec 1;184(3):282-92 [PMID: 22981968]

MeSH Term

Animals
Ephemeroptera
Fresh Water
Ion Transport
Osmoregulation
Salinity
Sodium
Sulfates

Chemicals

Sulfates
Sodium

Word Cloud

Created with Highcharts 10.0.0salinityNaEphemeropteraexternalhypothesesionincreaseshypothesisincreasingincreaseosmolalityturnoveruptake[Formula:seetext]premisedresultmayflylowerinternalhaemolymphspeciesalsotoxicityosmoregulationgreaterconceptualratemayfliesfirstindividualsdevoteenergyhomeostasiswithoutlosslocalizedmanyfreshwatersgloballyhumanactivitiesAssociatedlossesabundancerichnessconcentrationsdeclinenatureManysuffersubstantialmortalitysinglelaboratorytestssalinitiesfindingsproblematicconventionaltheorysuggestsfreshwateranimalsexperiencestressexplorethreeexplainsaltsensitivitybasedobservationssodiumconcentrationeliminationratesSulphatealthoughunlikedecreasesenergeticallycostlyproposesmustproportionexpenseusesincludinggrowthdevelopmentLethallevelspresumablyableenoughmaintaincriticalvitalfunctionssecondexchangedoutgoingHleadingpHregulationthirdpoisoningincreasedNoneproposedpotentialproblemsyettestableresearcheffortfocusedattemptingfalsifythemThisarticlepartthemeissue'Saltfreshwaters:causesecologicalconsequencesfutureprospects'lostfollowingsmallsalinity?Threeosmophysiologicalmajorionsstreaminvertebrates

Similar Articles

Cited By