Efficient Data Augmentation for Fitting Stochastic Epidemic Models to Prevalence Data.

Jonathan Fintzi, Xiang Cui, Jon Wakefield, Vladimir N Minin
Author Information
  1. Jonathan Fintzi: Department of Biostatistics, University of Washington, Seattle.
  2. Xiang Cui: Department of Statistics, University of Washington, Seattle.
  3. Jon Wakefield: Department of Biostatistics, University of Washington, Seattle.
  4. Vladimir N Minin: Department of Statistics, University of Washington, Seattle.

Abstract

Stochastic epidemic models describe the dynamics of an epidemic as a disease spreads through a population. Typically, only a fraction of cases are observed at a set of discrete times. The absence of complete information about the time evolution of an epidemic gives rise to a complicated latent variable problem in which the state space size of the epidemic grows large as the population size increases. This makes analytically integrating over the missing data infeasible for populations of even moderate size. We present a data augmentation Markov chain Monte Carlo (MCMC) framework for Bayesian estimation of stochastic epidemic model parameters, in which measurements are augmented with subject-level disease histories. In our MCMC algorithm, we propose each new subject-level path, conditional on the data, using a time-inhomogeneous continuous-time Markov process with rates determined by the infection histories of other individuals. The method is general, and may be applied to a broad class of epidemic models with only minimal modifications to the model dynamics and/or emission distribution. We present our algorithm in the context of multiple stochastic epidemic models in which the data are binomially sampled prevalence counts, and apply our method to data from an outbreak of influenza in a British boarding school.

Keywords

References

  1. Biom J. 2012 Nov;54(6):824-43 [PMID: 23034894]
  2. PLoS Med. 2005 Jul;2(7):e174 [PMID: 16013892]
  3. Biometrics. 1982 Mar;38(1):115-26 [PMID: 7082755]
  4. Math Biosci. 2002 Nov-Dec;180:103-14 [PMID: 12387918]
  5. J Am Stat Assoc. 2012;107(500):1410-1426 [PMID: 37583443]
  6. J R Soc Interface. 2008 Aug 6;5(25):885-97 [PMID: 18174112]
  7. J R Soc Interface. 2015 Jun 6;12(107): [PMID: 25994297]
  8. J Theor Biol. 2003 Jul 7;223(1):19-25 [PMID: 12782113]
  9. Stat Med. 2010 Sep 10;29(20):2069-77 [PMID: 20809536]
  10. Stat Med. 2004 Nov 30;23(22):3469-87 [PMID: 15505892]
  11. J R Soc Interface. 2009 Feb 6;6(31):187-202 [PMID: 19205079]
  12. Math Biosci. 2010 May;225(1):24-35 [PMID: 20102724]
  13. Math Biosci. 2013 Dec;246(2):272-9 [PMID: 24427788]
  14. Ann Appl Stat. 2009 Sep 1;3(3):1204 [PMID: 20148133]
  15. Theor Popul Biol. 1977 Feb;11(1):23-36 [PMID: 854859]
  16. Ann Appl Stat. 2016 Jun;10(2):575-595 [PMID: 27746850]
  17. Biostatistics. 2004 Apr;5(2):249-61 [PMID: 15054029]
  18. Biometrics. 2006 Dec;62(4):1170-7 [PMID: 17156292]
  19. Biostatistics. 2009 Oct;10(4):779-91 [PMID: 19648227]

Grants

  1. R01 AI107034/NIAID NIH HHS
  2. R01 CA095994/NCI NIH HHS
  3. U54 GM111274/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0epidemicdataMarkovmodelmodelssizestochasticStochasticdynamicsdiseasepopulationpresentaugmentationchainMCMCBayesiansubject-levelhistoriesalgorithmmethodDatadescribespreadsTypicallyfractioncasesobservedsetdiscretetimesabsencecompleteinformationtimeevolutiongivesrisecomplicatedlatentvariableproblemstatespacegrowslargeincreasesmakesanalyticallyintegratingmissinginfeasiblepopulationsevenmoderateMonteCarloframeworkestimationparametersmeasurementsaugmentedproposenewpathconditionalusingtime-inhomogeneouscontinuous-timeprocessratesdeterminedinfectionindividualsgeneralmayappliedbroadclassminimalmodificationsand/oremissiondistributioncontextmultiplebinomiallysampledprevalencecountsapplyoutbreakinfluenzaBritishboardingschoolEfficientAugmentationFittingEpidemicModelsPrevalencecontinuous–timecounthidden

Similar Articles

Cited By