Gas-Phase Dynamics of Collision Induced Unfolding, Collision Induced Dissociation, and Electron Transfer Dissociation-Activated Polymer Ions.

Jean R N Haler, Philippe Massonnet, Johann Far, Victor R de la Rosa, Philippe Lecomte, Richard Hoogenboom, Christine Jérôme, Edwin De Pauw
Author Information
  1. Jean R N Haler: Mass Spectrometry Laboratory, MolSys Research unit, Quartier Agora, University of Liège, Allée du Six Aout 11, B-4000, Liège, Belgium. jean.haler@uliege.be.
  2. Philippe Massonnet: Mass Spectrometry Laboratory, MolSys Research unit, Quartier Agora, University of Liège, Allée du Six Aout 11, B-4000, Liège, Belgium.
  3. Johann Far: Mass Spectrometry Laboratory, MolSys Research unit, Quartier Agora, University of Liège, Allée du Six Aout 11, B-4000, Liège, Belgium.
  4. Victor R de la Rosa: Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000, Ghent, Belgium.
  5. Philippe Lecomte: Center for Education and Research on Macromolecules, CESAM Research Unit, Quartier Agora, University of Liège, Allée du Six Aout 13, B-4000, Liège, Belgium.
  6. Richard Hoogenboom: Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000, Ghent, Belgium.
  7. Christine Jérôme: Center for Education and Research on Macromolecules, CESAM Research Unit, Quartier Agora, University of Liège, Allée du Six Aout 13, B-4000, Liège, Belgium.
  8. Edwin De Pauw: Mass Spectrometry Laboratory, MolSys Research unit, Quartier Agora, University of Liège, Allée du Six Aout 11, B-4000, Liège, Belgium.

Abstract

polymer characterizations are often performed using mass spectrometry (MS). Aside from MS and different tandem MS (MS/MS) techniques, ion mobility-mass spectrometry (IM-MS) has been recently added to the inventory of characterization technique. However, only few studies have focused on the reproducibility and robustness of polymer IM-MS analyses. Here, we perform collisional and electron-mediated activation of polymer ions before measuring IM drift times, collision cross-sections (CCS), or reduced ion mobilities (K). The resulting IM behavior of different activated product ions is then compared to non-activated native intact polymer ions. First, we analyzed collision induced unfolding (CIU) of precursor ions to test the robustness of polymer ion shapes. Then, we focused on fragmentation product ions to test for shape retentions from the precursor ions: cation ejection species (CES) and product ions with m/z and charge state values identical to native intact polymer ions. The CES species are formed using both collision induced dissociation (CID) and electron transfer dissociation (ETD, formally ETnoD) experiments. Only small drift time, CCS, or K deviations between the activated/formed ions are observed compared to the native intact polymer ions. The polymer ion shapes seem to depend solely on their mass and charge state. The experiments were performed on three synthetic homopolymers: poly(ethoxy phosphate) (PEtP), poly(2-n-propyl-2-oxazoline) (Pn-PrOx), and poly(ethylene oxide) (PEO). These results confirm the robustness of polymer ion CCSs for IM calibration, especially singly charged polymer ions. The results are also discussed in the context of polymer analyses, CCS predictions, and probing ion-drift gas interaction potentials. Graphical Abstract.

Keywords

References

  1. J Phys Chem B. 2012 Jan 12;116(1):593-8 [PMID: 22070198]
  2. Anal Chem. 2017 Sep 19;89(18):9892-9899 [PMID: 28787150]
  3. Chem Commun (Camb). 2015 Nov 7;51(86):15677-80 [PMID: 26359908]
  4. Methods. 2018 Jul 15;144:125-133 [PMID: 29601857]
  5. J Am Soc Mass Spectrom. 2008 Sep;19(9):1312-9 [PMID: 18640055]
  6. J Am Soc Mass Spectrom. 2017 Jan;28(1):69-76 [PMID: 27495285]
  7. J Am Soc Mass Spectrom. 2005 Sep;16(9):1493-1497 [PMID: 16019223]
  8. Rapid Commun Mass Spectrom. 2013 May 30;27(10):1095-100 [PMID: 23592113]
  9. Anal Chim Acta. 2016 Aug 17;932:1-21 [PMID: 27286765]
  10. J Am Chem Soc. 2002 Aug 7;124(31):9287-91 [PMID: 12149036]
  11. Chemistry. 2011 Aug 22;17(35):9738-45 [PMID: 21735496]
  12. J Am Soc Mass Spectrom. 2013 Jan;24(1):74-82 [PMID: 23192702]
  13. J Mass Spectrom. 2017 Mar;52(3):133-138 [PMID: 28112477]
  14. Anal Chem. 2015 Mar 17;87(6):3231-8 [PMID: 25629302]
  15. Anal Chem. 2010 Mar 15;82(6):2294-302 [PMID: 20151701]
  16. J Mass Spectrom. 2012 Jan;47(1):105-14 [PMID: 22282096]
  17. J Am Soc Mass Spectrom. 1998 Aug;9(8):743-59 [PMID: 9692251]
  18. J Am Soc Mass Spectrom. 2009 Dec;20(12):2238-47 [PMID: 19786355]
  19. J Am Soc Mass Spectrom. 2017 Nov;28(11):2483-2491 [PMID: 28762031]
  20. J Am Soc Mass Spectrom. 2015 Sep;26(9):1433-43 [PMID: 26115967]
  21. J Am Soc Mass Spectrom. 2014 Aug;25(8):1384-93 [PMID: 24845353]
  22. Anal Chem. 2012 Aug 21;84(16):7124-30 [PMID: 22845859]
  23. J Am Soc Mass Spectrom. 2008 Aug;19(8):1163-75 [PMID: 18524621]
  24. Anal Chem. 2016 Nov 15;88(22):10821-10825 [PMID: 27805355]
  25. Anal Chem. 2014 Oct 7;86(19):9693-700 [PMID: 25188877]
  26. J Am Soc Mass Spectrom. 2014 Aug;25(8):1332-45 [PMID: 24924517]
  27. Anal Chim Acta. 2014 Jan 15;808:163-74 [PMID: 24370102]
  28. J Am Soc Mass Spectrom. 2016 Jan;27(1):31-40 [PMID: 26369778]
  29. J Am Soc Mass Spectrom. 2016 Jan;27(1):41-9 [PMID: 26323618]
  30. Rapid Commun Mass Spectrom. 2018 Mar 15;32(5):423-430 [PMID: 29235689]
  31. Anal Chem. 2010 Nov 15;82(22):9350-6 [PMID: 20961067]
  32. Anal Chem. 2007 Nov 1;79(21):7965-74 [PMID: 17887728]
  33. J Am Chem Soc. 2003 Sep 3;125(35):10740-7 [PMID: 12940760]
  34. J Chem Phys. 2018 Feb 21;148(7):074102 [PMID: 29471643]
  35. J Phys Chem A. 2013 May 16;117(19):3887-901 [PMID: 23488939]
  36. Angew Chem Int Ed Engl. 2017 Feb 1;56(6):1452-1464 [PMID: 27712048]
  37. Anal Chem. 2016 Oct 4;88(19):9469-9478 [PMID: 27573618]
  38. Anal Chem. 2017 Nov 21;89(22):12076-12086 [PMID: 29064225]
  39. Angew Chem Int Ed Engl. 2014 Aug 25;53(35):9209-12 [PMID: 24990104]
  40. J Am Soc Mass Spectrom. 2018 Jan;29(1):114-120 [PMID: 29027151]
  41. J Am Soc Mass Spectrom. 2011 Oct;22(10):1744-52 [PMID: 21952888]
  42. Biophys J. 1999 Mar;76(3):1591-7 [PMID: 10049339]
  43. Anal Chem. 2016 Apr 5;88(7):3715-22 [PMID: 26950162]
  44. J Am Soc Mass Spectrom. 2017 Nov;28(11):2492-2499 [PMID: 28808984]
  45. Rapid Commun Mass Spectrom. 2011 Jun 15;25(11):1559-66 [PMID: 21594930]
  46. J Am Soc Mass Spectrom. 2001 May;12(5):565-70 [PMID: 11349954]
  47. Anal Chem. 2008 Dec 1;80(23):9073-83 [PMID: 19551934]
  48. Anal Chem. 2015 Nov 17;87(22):11509-15 [PMID: 26471104]
  49. J Am Soc Mass Spectrom. 2015 Jan;26(1):14-24 [PMID: 25331153]
  50. Mass Spectrom Rev. 2011 Jul-Aug;30(4):523-59 [PMID: 20623599]
  51. Nat Protoc. 2008;3(7):1139-52 [PMID: 18600219]

Word Cloud

Created with Highcharts 10.0.0polymerionsioninduceddissociationCollisionMSrobustnessIMcollisionCCSproductnativeintactpolyPolymerperformedusingmassspectrometrydifferentIM-MSfocusedanalysesdriftKcomparedunfoldingCIUprecursortestshapesspeciesCESchargestateCIDtransferETDexperimentsresultscalibrationInducedElectroncharacterizationsoftenAsidetandemMS/MStechniquesmobility-massrecentlyaddedinventorycharacterizationtechniqueHoweverstudiesreproducibilityperformcollisionalelectron-mediatedactivationmeasuringtimescross-sectionsreducedmobilitiesresultingbehavioractivatednon-activatedFirstanalyzedfragmentationshaperetentionsions:cationejectionm/zvaluesidenticalformedelectronformallyETnoDsmalltimedeviationsactivated/formedobservedseemdependsolelythreesynthetichomopolymers:ethoxyphosphatePEtP2-n-propyl-2-oxazolinePn-PrOxethyleneoxidePEOconfirmCCSsespeciallysinglychargedalsodiscussedcontextpredictionsprobingion-driftgasinteractionpotentialsGraphicalAbstractGas-PhaseDynamicsUnfoldingDissociationTransferDissociation-ActivatedIonsIonmobilitySyntheticpolymers

Similar Articles

Cited By