Scaling up genetic circuit design for cellular computing: advances and prospects.

Yiyu Xiang, Neil Dalchau, Baojun Wang
Author Information
  1. Yiyu Xiang: 1School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF UK. ORCID
  2. Neil Dalchau: 3Microsoft Research, Cambridge, CB1 2FB UK. ORCID
  3. Baojun Wang: 1School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF UK. ORCID

Abstract

Synthetic biology aims to engineer and redesign biological systems for useful real-world applications in biomanufacturing, biosensing and biotherapy following a typical design-build-test cycle. Inspired from computer science and electronics, synthetic gene circuits have been designed to exhibit control over the flow of information in biological systems. Two types are Boolean logic inspired TRUE or FALSE digital logic and graded analog computation. Key principles for gene circuit engineering include modularity, orthogonality, predictability and reliability. Initial circuits in the field were small and hampered by a lack of modular and orthogonal components, however in recent years the library of available parts has increased vastly. New tools for high throughput DNA assembly and characterization have been developed enabling rapid prototyping, systematic in situ characterization, as well as automated design and assembly of circuits. Recently implemented computing paradigms in circuit memory and distributed computing using cell consortia will also be discussed. Finally, we will examine existing challenges in building predictable large-scale circuits including modularity, context dependency and metabolic burden as well as tools and methods used to resolve them. These new trends and techniques have the potential to accelerate design of larger gene circuits and result in an increase in our basic understanding of circuit and host behaviour.

Keywords

References

  1. Nat Struct Biol. 2000 Sep;7(9):730-4 [PMID: 10966639]
  2. Nat Biotechnol. 2006 Jun;24(6):708-12 [PMID: 16715074]
  3. PLoS Comput Biol. 2016 Feb 01;12(2):e1004685 [PMID: 26829588]
  4. Science. 2016 Jul 22;353(6297):aad8559 [PMID: 27463678]
  5. J R Soc Interface. 2009 Feb 6;6(31):187-202 [PMID: 19205079]
  6. J Biol Eng. 2013 May 10;7(1):13 [PMID: 23663447]
  7. Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):8884-9 [PMID: 22615351]
  8. Trends Biotechnol. 2008 Oct;26(10):538-44 [PMID: 18687496]
  9. J Mol Biol. 2016 Feb 27;428(5 Pt B):862-88 [PMID: 26463592]
  10. J Biol Eng. 2009 Mar 20;3:4 [PMID: 19298678]
  11. Nucleic Acids Res. 2017 Feb 17;45(3):1553-1565 [PMID: 28007941]
  12. ACS Synth Biol. 2018 Jan 19;7(1):166-175 [PMID: 28946740]
  13. Curr Opin Microbiol. 2016 Oct;33:74-82 [PMID: 27450541]
  14. J Biol Eng. 2009 Oct 29;3:19 [PMID: 19874625]
  15. Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6572-6577 [PMID: 29891706]
  16. ACS Synth Biol. 2018 May 18;7(5):1188-1194 [PMID: 29733626]
  17. Trends Biotechnol. 2016 May;34(5):371-381 [PMID: 26948437]
  18. Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5850-5 [PMID: 22454498]
  19. Science. 2016 Mar 25;351(6280):aad6253 [PMID: 27013737]
  20. Integr Biol (Camb). 2016 Apr 18;8(4):564-70 [PMID: 26778746]
  21. Nat Rev Microbiol. 2014 May;12(5):355-67 [PMID: 24686413]
  22. Science. 2002 May 24;296(5572):1466-70 [PMID: 12029133]
  23. Nucleic Acids Res. 2016 Jan 8;44(1):496-507 [PMID: 26656950]
  24. J Comput Chem. 2011 Jan 15;32(1):170-3 [PMID: 20645303]
  25. Synth Syst Biotechnol. 2016 Sep 04;1(4):258-264 [PMID: 29062951]
  26. Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6286-91 [PMID: 20308593]
  27. Lab Chip. 2017 Jun 27;17(13):2198-2207 [PMID: 28613297]
  28. Nat Biotechnol. 2013 May;31(5):448-52 [PMID: 23396014]
  29. ACS Synth Biol. 2018 May 18;7(5):1406-1412 [PMID: 29641183]
  30. Proc Jpn Acad Ser B Phys Biol Sci. 2016;92(9):412-422 [PMID: 27840389]
  31. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W40-7 [PMID: 19429897]
  32. PLoS One. 2011 Feb 18;6(2):e16765 [PMID: 21364738]
  33. J Am Chem Soc. 2018 Mar 28;140(12):4302-4316 [PMID: 29480720]
  34. Nature. 2012 Nov 8;491(7423):249-53 [PMID: 23041931]
  35. Nat Nanotechnol. 2018 Apr;13(4):309-315 [PMID: 29133926]
  36. Nat Biotechnol. 2012 Nov;30(11):1137-42 [PMID: 23034349]
  37. Comput Struct Biotechnol J. 2013 Jun 26;7:e201304003 [PMID: 24688733]
  38. Drug Discov Today Dis Models. 2008 Winter;5(4):299-309 [PMID: 27840651]
  39. J Am Chem Soc. 2008 Dec 3;130(48):16310-5 [PMID: 18998646]
  40. J R Soc Interface. 2009 Aug 6;6 Suppl 4:S405-17 [PMID: 19364720]
  41. Mol Syst Biol. 2006;2:2006.0028 [PMID: 16738572]
  42. Cell. 2009 Jun 26;137(7):1272-81 [PMID: 19563759]
  43. Lab Chip. 2009 Jul 7;9(13):1850-8 [PMID: 19532959]
  44. Nat Methods. 2015 Apr;12(4):323-5 [PMID: 25730492]
  45. Biosens Bioelectron. 2013 Feb 15;40(1):368-76 [PMID: 22981411]
  46. Mol Syst Biol. 2007;3:133 [PMID: 17700541]
  47. Nat Methods. 2018 Jan;15(1):57-60 [PMID: 29200199]
  48. Nat Methods. 2014 Jul;11(7):723-6 [PMID: 24797424]
  49. Chem Commun (Camb). 2016 Sep 15;52(76):11402-11405 [PMID: 27722239]
  50. Nat Biotechnol. 2015 Aug;33(8):831-8 [PMID: 26213851]
  51. Nature. 2000 Jan 20;403(6767):335-8 [PMID: 10659856]
  52. Lab Chip. 2014 Sep 21;14(18):3459-74 [PMID: 25012162]
  53. ACS Synth Biol. 2015 Oct 16;4(10):1151-64 [PMID: 26075958]
  54. Hum Mutat. 2017 Sep;38(9):1240-1250 [PMID: 28220625]
  55. Science. 2011 Sep 2;333(6047):1307-11 [PMID: 21885784]
  56. Cell. 2016 Feb 11;164(4):780-91 [PMID: 26830878]
  57. ACS Synth Biol. 2018 Feb 16;7(2):553-564 [PMID: 29240998]
  58. ACS Synth Biol. 2016 Dec 16;5(12):1412-1420 [PMID: 27454439]
  59. Biochem Soc Trans. 2003 Dec;31(Pt 6):1472-3 [PMID: 14641091]
  60. Mol Syst Biol. 2014 Nov 24;10:763 [PMID: 25422271]
  61. Lab Chip. 2017 Jan 17;17(2):323-331 [PMID: 27957569]
  62. J Biol Eng. 2010 Nov 01;4:12 [PMID: 21040586]
  63. Mol Syst Biol. 2017 Nov 9;13(11):952 [PMID: 29122925]
  64. Mol Syst Biol. 2016 May 17;12(5):869 [PMID: 27193783]
  65. ACS Synth Biol. 2018 Jan 19;7(1):107-120 [PMID: 29113433]
  66. J R Soc Interface. 2009 Aug 6;6 Suppl 4:S437-50 [PMID: 19369220]
  67. PLoS One. 2013 Oct 23;8(10):e78442 [PMID: 24194933]
  68. Nat Microbiol. 2017 Dec;2(12):1658-1666 [PMID: 28947816]
  69. Nat Biotechnol. 2007 Jul;25(7):795-801 [PMID: 17515909]
  70. J Biol Eng. 2008 Apr 14;2:5 [PMID: 18410688]
  71. ACS Synth Biol. 2013 Aug 16;2(8):431-41 [PMID: 23654274]
  72. Science. 2012 Apr 13;336(6078):183-7 [PMID: 22499939]
  73. Cell. 2014 Nov 6;159(4):940-54 [PMID: 25417167]
  74. Nat Chem Biol. 2017 Mar;13(3):309-316 [PMID: 28092361]
  75. J Integr Bioinform. 2018 Apr 2;15(1): [PMID: 29605823]
  76. Science. 2014 Mar 21;343(6177):1360-3 [PMID: 24578530]
  77. ACS Synth Biol. 2015 May 15;4(5):535-46 [PMID: 25299321]
  78. ACS Synth Biol. 2014 Jun 20;3(6):387-97 [PMID: 24303785]
  79. ACS Synth Biol. 2016 Jan 15;5(1):89-98 [PMID: 26436725]
  80. J Phys Chem B. 2008 Sep 18;112(37):11777-84 [PMID: 18712917]
  81. Nat Biotechnol. 2012 Oct;30(10):1002-6 [PMID: 22983090]
  82. Trends Biotechnol. 2012 Jun;30(6):342-9 [PMID: 22516742]
  83. Nat Struct Mol Biol. 2015 Jan;22(1):8-10 [PMID: 25565027]
  84. Nat Commun. 2011 Oct 18;2:508 [PMID: 22009040]
  85. ACS Synth Biol. 2013 Aug 16;2(8):411-7 [PMID: 23654250]
  86. Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):2526-2531 [PMID: 29463749]
  87. Curr Biol. 2013 Jul 22;23(14):1269-79 [PMID: 23810534]
  88. Biotechnol Bioeng. 1991 Apr 5;37(8):736-45 [PMID: 18600670]
  89. Methods Mol Biol. 2017;1572:349-363 [PMID: 28299699]
  90. Science. 2018 Apr 13;360(6385): [PMID: 29449507]
  91. Nat Chem Biol. 2012 Mar 25;8(5):447-54 [PMID: 22446835]
  92. Synth Syst Biotechnol. 2016 Oct 17;1(4):243-257 [PMID: 29062950]
  93. Nat Commun. 2018 Jan 4;9(1):64 [PMID: 29302024]
  94. Nat Biotechnol. 2017 May;35(5):453-462 [PMID: 28346402]
  95. Nat Methods. 2013 Jul;10(7):659-64 [PMID: 23727987]
  96. Nat Biotechnol. 2017 Jul;35(7):653-658 [PMID: 28553941]
  97. Curr Opin Biotechnol. 2010 Feb;21(1):85-99 [PMID: 20206495]
  98. ACS Synth Biol. 2016 Aug 19;5(8):862-73 [PMID: 27439436]
  99. Mol Syst Biol. 2005;1:2005.0018 [PMID: 16729053]
  100. Nat Chem Biol. 2015 Mar;11(3):207-213 [PMID: 25643171]
  101. Nature. 2010 Jan 21;463(7279):288-90 [PMID: 20090726]
  102. Cell. 2013 Feb 28;152(5):1173-83 [PMID: 23452860]
  103. Nat Methods. 2016 Feb;13(2):177-83 [PMID: 26689263]
  104. Philos Trans A Math Phys Eng Sci. 2014 Feb 24;372(2012):20130110 [PMID: 24567476]
  105. Nat Methods. 2014 May;11(5):508-20 [PMID: 24781324]
  106. PLoS One. 2008;3(11):e3647 [PMID: 18985154]
  107. Cell. 2014 Nov 6;159(4):925-39 [PMID: 25417166]
  108. Nucleic Acids Res. 2009 May;37(8):2493-503 [PMID: 19264798]
  109. ACS Synth Biol. 2012 Nov 16;1(11):555-64 [PMID: 23656232]
  110. Nature. 2011 Jan 13;469(7329):212-5 [PMID: 21150903]
  111. J R Soc Interface. 2016 Jul;13(120): [PMID: 27440256]
  112. Cell. 2012 Aug 3;150(3):647-58 [PMID: 22863014]
  113. Integr Biol (Camb). 2016 Apr 18;8(4):456-64 [PMID: 26674800]
  114. Nat Biotechnol. 2015 Aug;33(8):839-41 [PMID: 26237515]
  115. Science. 2014 Nov 14;346(6211):1256272 [PMID: 25395541]
  116. Nature. 2000 Jan 20;403(6767):339-42 [PMID: 10659857]
  117. N Biotechnol. 2015 Dec 25;32(6):635-43 [PMID: 25579192]
  118. J Vis Exp. 2015 Mar 11;(97): [PMID: 25867144]
  119. Front Bioeng Biotechnol. 2014 Jan 20;2:1 [PMID: 25152877]
  120. Nucleic Acids Res. 2014 Jan;42(1):681-9 [PMID: 24078086]
  121. ACS Synth Biol. 2016 May 20;5(5):426-33 [PMID: 26830031]
  122. Nat Biotechnol. 2018 Apr;36(4):352-358 [PMID: 29553576]
  123. Nature. 2017 Jul 20;547(7663):345-349 [PMID: 28700573]
  124. Nucleic Acids Res. 2014 Aug;42(14):9484-92 [PMID: 25030903]
  125. Curr Opin Biotechnol. 2014 Oct;29:146-55 [PMID: 24794536]
  126. Nat Chem Biol. 2014 Feb;10(2):99-105 [PMID: 24316737]
  127. Nature. 2011 Jan 13;469(7329):207-11 [PMID: 21150900]
  128. Nat Commun. 2017 May 25;8:15459 [PMID: 28541304]
  129. PLoS One. 2017 Apr 19;12(4):e0176013 [PMID: 28422998]
  130. Interface Focus. 2011 Dec 6;1(6):807-20 [PMID: 23226583]
  131. Mol Syst Biol. 2008;4:161 [PMID: 18277378]
  132. Science. 2016 Apr 1;352(6281):aac7341 [PMID: 27034378]
  133. ACS Synth Biol. 2016 Jan 15;5(1):81-8 [PMID: 26390083]
  134. Nucleic Acids Res. 2015 Feb 18;43(3):1955-64 [PMID: 25589545]
  135. Nat Chem Biol. 2011 Jul 03;7(8):531-7 [PMID: 21725303]
  136. Trends Biotechnol. 2016 Aug;34(8):652-664 [PMID: 26996613]
  137. Nat Methods. 2015 May;12(5):415-8 [PMID: 25849635]
  138. Nature. 2000 Jun 1;405(6786):590-3 [PMID: 10850721]
  139. Mol Syst Biol. 2008;4:166 [PMID: 18277382]
  140. Integr Biol (Camb). 2011 Feb;3(2):97-108 [PMID: 21258712]
  141. Nucleic Acids Res. 2012 Jun;40(11):5180-7 [PMID: 22323524]
  142. Nucleic Acids Res. 2014 Jan;42(1):e7 [PMID: 24153110]
  143. Science. 2018 Jul 13;361(6398):156-162 [PMID: 29853554]
  144. Nucleic Acids Res. 2014 Oct 29;42(19):12322-8 [PMID: 25262348]
  145. Nat Commun. 2016 Jun 03;7:11658 [PMID: 27255669]
  146. Nucleic Acids Res. 2012 Sep 1;40(17):8773-81 [PMID: 22743271]
  147. Nucleic Acids Res. 2012 Aug;40(15):7584-95 [PMID: 22581776]
  148. Nature. 2014 Dec 18;516(7531):333-4 [PMID: 25519125]
  149. Bioinformatics. 2008 Nov 1;24(21):2551-3 [PMID: 18757873]
  150. Trends Microbiol. 2012 Aug;20(8):376-84 [PMID: 22682075]
  151. Nature. 2005 Apr 28;434(7037):1130-4 [PMID: 15858574]
  152. J Vis Exp. 2013 Dec 26;(82):50926 [PMID: 24430799]
  153. ACS Synth Biol. 2016 Jun 17;5(6):498-506 [PMID: 27111421]
  154. Nat Methods. 2014 Dec;11(12):1261-6 [PMID: 25344638]
  155. Biochem Soc Trans. 2013 Oct;41(5):1195-200 [PMID: 24059508]
  156. Genome Res. 2017 Dec;27(12):2015-2024 [PMID: 29097404]
  157. Mol Syst Biol. 2013 Oct 29;9:702 [PMID: 24169405]
  158. Biotechnol Bioeng. 1990 Mar 25;35(7):668-81 [PMID: 18592563]
  159. Biotechnol J. 2012 Jul;7(7):856-66 [PMID: 22649052]
  160. ACS Synth Biol. 2014 Aug 15;3(8):556-64 [PMID: 24933033]
  161. Nucleic Acids Res. 2012 Apr;40(8):3763-74 [PMID: 22180537]
  162. Nat Chem Biol. 2018 Jan;14(1):29-35 [PMID: 29131146]
  163. Nat Chem Biol. 2018 Jan 16;14(2):103-106 [PMID: 29337969]
  164. Nat Biotechnol. 2009 Oct;27(10):946-50 [PMID: 19801975]
  165. Chem Commun (Camb). 2014 Oct 11;50(79):11642-4 [PMID: 25062273]
  166. Biotechnol J. 2018 May;13(5):e1700167 [PMID: 29149479]
  167. Cell Syst. 2017 Jul 26;5(1):11-24.e12 [PMID: 28734826]
  168. Bioinformatics. 2003 Mar 1;19(4):524-31 [PMID: 12611808]
  169. ACS Synth Biol. 2017 Nov 17;6(11):2130-2135 [PMID: 28874044]
  170. Mol Syst Biol. 2012 Mar 27;8:576 [PMID: 22453733]
  171. Nat Rev Genet. 2009 Sep;10(9):628-38 [PMID: 19668248]
  172. Sci Rep. 2015 Jan 28;5:8090 [PMID: 25627341]
  173. Nat Chem Biol. 2015 Mar;11(3):214-20 [PMID: 25643173]
  174. PLoS Biol. 2006 Apr;4(4):e45 [PMID: 16602820]
  175. ACS Synth Biol. 2013 Oct 18;2(10):547-67 [PMID: 23905721]
  176. ACS Synth Biol. 2014 Dec 19;3(12):880-91 [PMID: 25360681]
  177. ACS Synth Biol. 2016 Aug 19;5(8):817-26 [PMID: 26854090]
  178. Nat Methods. 2009 May;6(5):343-5 [PMID: 19363495]
  179. Nat Commun. 2017 May 24;8:15336 [PMID: 28537256]
  180. PLoS One. 2011;6(7):e21622 [PMID: 21750718]
  181. Nature. 2017 Aug 3;548(7665):117-121 [PMID: 28746304]
  182. Nature. 2006 Apr 13;440(7086):940-3 [PMID: 16612385]
  183. ACS Synth Biol. 2016 Apr 15;5(4):344-55 [PMID: 26818434]
  184. Nature. 2006 Feb 16;439(7078):856-60 [PMID: 16482159]
  185. ACS Synth Biol. 2018 May 18;7(5):1477-1480 [PMID: 29715010]
  186. Mol Syst Biol. 2016 Jan 25;12(1):849 [PMID: 26814193]
  187. Curr Opin Biotechnol. 2009 Aug;20(4):479-85 [PMID: 19758796]
  188. ACS Synth Biol. 2014 Mar 21;3(3):182-7 [PMID: 23991760]
  189. Science. 2017 Dec 15;358(6369):1457-1461 [PMID: 29170279]
  190. Biotechnol Bioeng. 2005 Apr 5;90(1):116-26 [PMID: 15736162]
  191. Mol Cell. 2016 Jul 21;63(2):329-336 [PMID: 27425413]
  192. Synth Biol (Oxf). 2018;3(1):ysy005 [PMID: 30003145]

Word Cloud

Created with Highcharts 10.0.0circuitscircuitgenelogicdesigncomputingSyntheticbiologybiologicalsystemscomputationmodularitytoolsassemblycharacterizationwellwillGeneticaimsengineerredesignusefulreal-worldapplicationsbiomanufacturingbiosensingbiotherapyfollowingtypicaldesign-build-testcycleInspiredcomputerscienceelectronicssyntheticdesignedexhibitcontrolflowinformationTwotypesBooleaninspiredTRUEFALSEdigitalgradedanalogKeyprinciplesengineeringincludeorthogonalitypredictability andreliabilityInitialfieldsmallhamperedlackmodularorthogonalcomponentshoweverrecentyearslibraryavailablepartsincreasedvastlyNewhighthroughputDNAdevelopedenablingrapidprototypingsystematicsituautomatedRecentlyimplementedparadigmsmemorydistributedusingcellconsortiaalsodiscussedFinallyexamineexistingchallengesbuildingpredictablelarge-scaleincludingcontextdependencymetabolicburdenmethodsusedresolvenewtrendstechniquespotentialacceleratelargerresultincreasebasicunderstandinghostbehaviourScalinggeneticcellularcomputing:advancesprospectsAnalogBiodesignautomationCellulargates

Similar Articles

Cited By