Pharmaceutical Induction of PGC-1 Promotes Retinal Pigment Epithelial Cell Metabolism and Protects against Oxidative Damage.

Sangeeta Satish, Hannah Philipose, Mariana Aparecida Brunini Rosales, Magali Saint-Geniez
Author Information
  1. Sangeeta Satish: Graduate Medical Sciences, Boston University School of Medicine, Boston, MA 02118, USA.
  2. Hannah Philipose: Schepens Eye Research Institute of Mass. Eye and Ear, Boston, MA 02114, USA.
  3. Mariana Aparecida Brunini Rosales: Schepens Eye Research Institute of Mass. Eye and Ear, Boston, MA 02114, USA.
  4. Magali Saint-Geniez: Schepens Eye Research Institute of Mass. Eye and Ear, Boston, MA 02114, USA. ORCID

Abstract

Retinal pigment epithelium (RPE) dysfunction due to accumulation of reactive oxygen species and oxidative damage is a key event in the development of age-related macular degeneration (AMD). Here, we examine the therapeutic potential of ZLN005, a selective PGC-1 transcriptional regulator, in protecting RPE from cytotoxic oxidative damage. Gene expression analysis on ARPE-19 cells treated with ZLN005 shows robust upregulation of PGC-1 and its associated transcription factors, antioxidant enzymes, and mitochondrial genes. Energetic profiling shows that ZLN005 treatment enhances RPE mitochondrial function by increasing basal and maximal respiration rates, and spare respiratory capacity. In addition, ZLN005 robustly protects ARPE-19 cells from cell death caused by HO, ox-LDL, and NaIO without exhibiting any cytotoxicity under basal conditions. ZLN005 protection against HO-mediated cell death was lost in PGC-1-silenced cells. Our data indicates that ZLN005 efficiently protects RPE cells from oxidative damage through selective induction of PGC-1 and its target antioxidant enzymes. ZLN005 may serve as a novel therapeutic agent for retinal diseases associated with RPE dystrophies.

References

  1. Skelet Muscle. 2015 Mar 18;5:9 [PMID: 25834726]
  2. Am J Pathol. 2013 Jan;182(1):255-65 [PMID: 23141926]
  3. Surv Ophthalmol. 2000 Sep-Oct;45(2):115-34 [PMID: 11033038]
  4. Am J Pathol. 2014 Apr;184(4):1017-1029 [PMID: 24508229]
  5. Am J Physiol Cell Physiol. 2009 Nov;297(5):C1200-10 [PMID: 19759330]
  6. PLoS One. 2012;7(2):e31272 [PMID: 22348062]
  7. Int Rev Cell Mol Biol. 2012;298:135-77 [PMID: 22878106]
  8. Sci Transl Med. 2012 Jul 11;4(142):142ra97 [PMID: 22786682]
  9. Prog Retin Eye Res. 2012 Jan;31(1):28-42 [PMID: 22085795]
  10. Invest Ophthalmol Vis Sci. 2014 Mar 28;55(3):1941-53 [PMID: 24481259]
  11. Free Radic Biol Med. 2013 Apr;57:176-87 [PMID: 23295411]
  12. J Biol Chem. 2009 Jun 12;284(24):16236-45 [PMID: 19366681]
  13. Invest Ophthalmol Vis Sci. 2010 Nov;51(11):5470-9 [PMID: 20505194]
  14. Prog Retin Eye Res. 2000 Mar;19(2):205-21 [PMID: 10674708]
  15. Physiol Rev. 2005 Jul;85(3):845-81 [PMID: 15987797]
  16. Mitochondrion. 2013 Nov;13(6):662-7 [PMID: 24075934]
  17. Sci Rep. 2016 Nov 16;6:37279 [PMID: 27849035]
  18. Aging (Albany NY). 2010 Dec;2(12):981-9 [PMID: 21098885]
  19. Exp Cell Res. 1994 Sep;214(1):242-9 [PMID: 8082727]
  20. Invest Ophthalmol Vis Sci. 2014 Jul 01;55(7):4613-27 [PMID: 24985474]
  21. PLoS One. 2014 May 29;9(5):e98275 [PMID: 24874187]
  22. J Clin Invest. 2006 Mar;116(3):615-22 [PMID: 16511594]
  23. Mol Cell. 2007 Apr 13;26(1):1-14 [PMID: 17434122]
  24. Invest Ophthalmol Vis Sci. 2007 Oct;48(10):4407-20 [PMID: 17898259]
  25. BMC Bioinformatics. 2017 Nov 29;18(1):529 [PMID: 29187165]
  26. Invest Ophthalmol Vis Sci. 2016 Sep 1;57(11):4704-12 [PMID: 27607416]
  27. Invest Ophthalmol Vis Sci. 2016 Mar;57(3):1038-51 [PMID: 26962700]
  28. J Neurosci Res. 2003 Mar 15;71(6):759-62 [PMID: 12605400]
  29. Am J Ophthalmol. 1999 Jun;127(6):694-709 [PMID: 10372880]
  30. Ophthalmology. 2014 Sep;121(9):1766-72 [PMID: 24768241]
  31. PLoS One. 2015 Aug 05;10(8):e0134870 [PMID: 26244551]
  32. Exp Eye Res. 2014 Sep;126:1-4 [PMID: 25152358]
  33. Diabetes. 2013 Apr;62(4):1297-307 [PMID: 23250358]
  34. Invest Ophthalmol Vis Sci. 2011 Jun 01;52(6):3521-9 [PMID: 21273542]
  35. Mol Cell Biol. 2017 Sep 11;: [PMID: 28894028]
  36. PLoS One. 2012;7(11):e48925 [PMID: 23145024]
  37. PLoS One. 2011 Apr 29;6(4):e19456 [PMID: 21559389]
  38. Exp Cell Res. 2016 Jul 1;345(1):25-36 [PMID: 27208585]
  39. Cell Death Discov. 2016 Jul 04;2:16054 [PMID: 27551542]

MeSH Term

Antioxidants
Benzimidazoles
Cells, Cultured
Humans
Mitochondria
Oxidation-Reduction
Oxidative Stress
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
Protective Agents
Reactive Oxygen Species
Retinal Pigment Epithelium
Signal Transduction

Chemicals

Antioxidants
Benzimidazoles
PPARGC1A protein, human
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
Protective Agents
Reactive Oxygen Species
ZLN005

Word Cloud

Created with Highcharts 10.0.0ZLN005RPEPGC-1cellsoxidativedamageRetinaltherapeuticselectiveARPE-19showsassociatedantioxidantenzymesmitochondrialbasalprotectscelldeathpigmentepitheliumdysfunctiondueaccumulationreactiveoxygenspecieskeyeventdevelopmentage-relatedmaculardegenerationAMDexaminepotentialtranscriptionalregulatorprotectingcytotoxicGeneexpressionanalysistreatedrobustupregulationtranscriptionfactorsgenesEnergeticprofilingtreatmentenhancesfunctionincreasingmaximalrespirationratessparerespiratorycapacityadditionrobustlycausedHOox-LDLNaIOwithoutexhibitingcytotoxicityconditionsprotectionHO-mediatedlostPGC-1-silenceddataindicatesefficientlyinductiontargetmayservenovelagentretinaldiseasesdystrophiesPharmaceuticalInductionPromotesPigmentEpithelialCellMetabolismProtectsOxidativeDamage

Similar Articles

Cited By