Global discovery of small RNAs in the fish pathogen Edwardsiella piscicida: key regulator of adversity and pathogenicity.

He-He Du, Hai-Zhen Zhou, Ping Tang, Hui-Qin Huang, Min Liu, Yong-Hua Hu
Author Information
  1. He-He Du: Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
  2. Hai-Zhen Zhou: Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
  3. Ping Tang: Yunnan Agricultural University, Kunming, Yunnan, 650200, China.
  4. Hui-Qin Huang: Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
  5. Min Liu: Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China. liuming@itbb.org.cn.
  6. Yong-Hua Hu: Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China. huyonghua@itbb.org.cn.

Abstract

Recently, bacterial small RNA (sRNA) has been shown to be involved as a key regulator in stress responses. sRNAs of Edwardsiella piscicida, an important aquatic pathogen, are not well characterized to date. In this study, using RNA-seq technology, we globally found and identified sRNA candidates expressed from E. piscicida grown in normal LB medium, acid pressure, iron deficiency stress, and oxidation pressure. A total of 148 sRNAs were found, including 19 previously annotated sRNAs and 129 novel sRNA candidates by searching against the Rfam database. Compared in normal condition, the expression of 103 sRNAs (DEsRNA, differentially expressed sRNA) and 1615 mRNAs (DEmRNAs, differentially expressed mRNA) showed significant differences in three stress sample. Based on the prediction by IntaRNA and relational analysis between DEsRNAs and DEmRNAs, 103 DEsRNAs were predicted to regulate 769 target mRNAs. Pleiotropic function of target DEmRNAs indicated that sRNAs extensively participated in a variety of physiological processes, including response to adversity and pathogenicity, the latter was further confirmed by infection experiment. A large number transcription factors appeared in target genes of sRNAs, which suggested that sRNAs likely deeply interlaced within complex gene regulatory networks of E. piscicida. Moreover, 49 Hfq-associated sRNAs were also identified in this study. In summary, we globally discovered sRNAs for the first time in pathogenic bacteria of fish, and our findings indicated that sRNAs in E. piscicida have important roles in adaptation to environmental stress and pathogenicity. These results also provide clues for deciphering regulation mechanism of gene expression related to physiological response and pathogenicity.

References

  1. Microbiology. 2008 Jul;154(Pt 7):2060-9 [PMID: 18599834]
  2. J Bacteriol. 2018 Apr 9;200(9):null [PMID: 29463600]
  3. PLoS One. 2013 Sep 11;8(9):e74495 [PMID: 24040259]
  4. Curr Opin Microbiol. 2007 Apr;10(2):125-33 [PMID: 17395525]
  5. Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20435-40 [PMID: 21059903]
  6. PLoS Pathog. 2012;8(7):e1002788 [PMID: 22807675]
  7. Arch Microbiol. 2016 Sep;198(7):653-61 [PMID: 27125651]
  8. FEMS Microbiol Rev. 2015 May;39(3):362-78 [PMID: 25934124]
  9. Annu Rev Biophys. 2017 May 22;46:131-148 [PMID: 28532217]
  10. Infect Immun. 2015 Feb;83(2):583-90 [PMID: 25404031]
  11. Curr Top Microbiol Immunol. 2018;418:195-213 [PMID: 29556823]
  12. PLoS One. 2017 Mar 7;12(3):e0172783 [PMID: 28267754]
  13. Mol Cell. 2011 Sep 16;43(6):880-91 [PMID: 21925377]
  14. Biochem Soc Trans. 2017 Dec 15;45(6):1203-1212 [PMID: 29101308]
  15. Microbiologyopen. 2014 Feb;3(1):15-28 [PMID: 24319011]
  16. J Bacteriol. 2014 Dec;196(24):4229-38 [PMID: 25246476]
  17. Nucleic Acids Res. 2018 Mar 16;46(5):2585-2599 [PMID: 29294046]
  18. Infect Immun. 2018 Jan 22;86(2): [PMID: 29133345]
  19. Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):E709-17 [PMID: 21876162]
  20. Infect Immun. 2018 Aug 22;86(9): [PMID: 29986890]
  21. Virulence. 2017 Oct 3;8(7):1355-1377 [PMID: 28441105]
  22. FEMS Microbiol Rev. 2015 May;39(3):331-49 [PMID: 26009640]
  23. Dis Aquat Organ. 2016 Sep 26;121(2):141-148 [PMID: 27667811]
  24. J Proteomics. 2016 May 17;140:100-10 [PMID: 27102497]
  25. J Bacteriol. 2009 May;191(10):3384-91 [PMID: 19286811]
  26. J Appl Microbiol. 2013 Mar;114(3):644-54 [PMID: 23167785]
  27. J Biol Chem. 2013 Mar 22;288(12):7996-8003 [PMID: 23362267]
  28. Fish Shellfish Immunol. 2010 Dec;29(6):972-8 [PMID: 20732430]
  29. Front Cell Infect Microbiol. 2017 May 24;7:210 [PMID: 28596944]
  30. Front Microbiol. 2018 Feb 21;9:268 [PMID: 29515549]
  31. RNA. 2016 Oct;22(10):1560-73 [PMID: 27495318]
  32. Infect Immun. 2001 Sep;69(9):5689-97 [PMID: 11500445]
  33. Vet Res. 2014 Feb 25;45:23 [PMID: 24568370]
  34. Nucleic Acids Res. 2018 Mar 16;46(5):2600-2612 [PMID: 29294085]
  35. Mol Microbiol. 2017 Feb;103(3):387-397 [PMID: 27750368]
  36. Curr Opin Microbiol. 2018 Apr;42:53-61 [PMID: 29125938]
  37. Front Cell Infect Microbiol. 2014 Jul 15;4:91 [PMID: 25077072]
  38. Vet Microbiol. 2016 Jun 30;189:68-74 [PMID: 27259829]
  39. J Bacteriol. 2004 Jun;186(11):3355-62 [PMID: 15150220]
  40. Front Cell Infect Microbiol. 2014 Nov 12;4:162 [PMID: 25429360]
  41. Front Microbiol. 2015 Apr 10;6:295 [PMID: 25914692]
  42. Fish Shellfish Immunol. 2010 Dec;29(6):1082-91 [PMID: 20832475]
  43. Vet Microbiol. 2015 Jan 30;175(1):145-9 [PMID: 25465175]
  44. Curr Opin Microbiol. 2010 Feb;13(1):24-33 [PMID: 20080057]
  45. J Biosci. 2007 Dec;32(7):1331-44 [PMID: 18202458]
  46. J Biol Chem. 2011 Nov 11;286(45):39417-30 [PMID: 21953460]
  47. Gene. 2018 May 20;656:60-72 [PMID: 29501814]
  48. Cell. 2009 Feb 20;136(4):615-28 [PMID: 19239884]
  49. Nat Rev Microbiol. 2010 Dec;8(12):857-66 [PMID: 21079634]
  50. Mol Microbiol. 2010 Oct;78(2):380-94 [PMID: 20979336]
  51. J Mol Biol. 2001 Oct 12;313(1):1-12 [PMID: 11601842]
  52. FEMS Microbiol Lett. 2001 Mar 15;196(2):245-9 [PMID: 11267787]
  53. Curr Opin Microbiol. 2016 Apr;30:133-138 [PMID: 26907610]
  54. Nat Rev Microbiol. 2016 Dec;14(12):775-784 [PMID: 27640758]
  55. Cell Syst. 2018 Jun 27;6(6):743-751.e3 [PMID: 29886110]
  56. Vet Microbiol. 2011 Sep 28;152(3-4):394-400 [PMID: 21664076]
  57. Cell. 1997 Jul 11;90(1):43-53 [PMID: 9230301]
  58. J Basic Microbiol. 2009 Sep;49 Suppl 1:S79-86 [PMID: 19455515]

Grants

  1. 41476138/National Natural Science Foundation of China (CN)

MeSH Term

Animals
Edwardsiella
Enterobacteriaceae Infections
Fish Diseases
Gene Expression Regulation, Bacterial
High-Throughput Nucleotide Sequencing
RNA, Bacterial
Sequence Analysis, RNA
Virulence

Chemicals

RNA, Bacterial

Word Cloud

Created with Highcharts 10.0.0sRNAssRNAstresspiscicidapathogenicityexpressedEDEmRNAstargetsmallkeyregulatorEdwardsiellaimportantpathogenstudygloballyfoundidentifiedcandidatesnormalpressureincludingexpression103differentiallymRNAsDEsRNAsindicatedphysiologicalresponseadversitygenealsofishRecentlybacterialRNAshowninvolvedresponsesaquaticwellcharacterizeddateusingRNA-seqtechnologygrownLBmediumacidirondeficiencyoxidationtotal14819previouslyannotated129novelsearchingRfamdatabaseComparedconditionDEsRNA1615mRNAshowedsignificantdifferencesthreesampleBasedpredictionIntaRNArelationalanalysispredictedregulate769PleiotropicfunctionextensivelyparticipatedvarietyprocesseslatterconfirmedinfectionexperimentlargenumbertranscriptionfactorsappearedgenessuggestedlikelydeeplyinterlacedwithincomplexregulatorynetworksMoreover49Hfq-associatedsummarydiscoveredfirsttimepathogenicbacteriafindingsrolesadaptationenvironmentalresultsprovidecluesdecipheringregulationmechanismrelatedGlobaldiscoveryRNAspiscicida:

Similar Articles

Cited By (2)