An automated bacterial concentration and recovery system for pre-enrichment required in rapid Escherichia coli detection.

Yushan Zhang, Chang-Qing Xu, Tianyi Guo, Lingcheng Hong
Author Information
  1. Yushan Zhang: Faculty of Engineering, McMaster University, Hamilton, Canada.
  2. Chang-Qing Xu: Faculty of Engineering, McMaster University, Hamilton, Canada. cqxu@mcmaster.ca.
  3. Tianyi Guo: Forsee Instruments Ltd., Hamilton, Canada.
  4. Lingcheng Hong: Jiangsu Delin Environmental Protection Technology Co., Ltd., Jiangsu, China.

Abstract

One of the biggest challenges in rapid low concentration bacterial detection is the pre-concentration or pre-enrichment, which aims to increase bacteria concentration and reduce sample volume for easy bacterial detection. In practical bacterial detection, large-volume water samples with a pathogenic bacterial concentration of less than 1 CFU/mL have to be tested rapidly. The reported biosensors either have insufficient detection limit or have limited capability of handling a sufficiently large water sample. Therefore, a high-performance automated pre-enrichment process is strongly demanded in rapid practical bacterial detection. In this paper, a practical high performance automated bacterial concentration and recovery system (ABCRS) based on the combination of a ceramic membrane and tangential flow filtration technique was presented with short processing time (less than one hour), low pre-enrichment limit (≤0.005 CFU/mL), high concentration ratio (≥ 500), high recovery efficiency (~ 90%), and small final retentate volume (≤ 5 mL).

References

  1. Clin Microbiol Rev. 2014 Jul;27(3):631-46 [PMID: 24982325]
  2. Microb Ecol. 1982 Dec;8(4):313-23 [PMID: 24226049]
  3. Front Microbiol. 2016 Feb 26;7:223 [PMID: 26955370]
  4. J Environ Qual. 2009 Feb 25;38(2):822-5 [PMID: 19244504]
  5. Biosens Bioelectron. 2017 Jun 15;92:702-708 [PMID: 27839734]
  6. Can J Microbiol. 2005 Apr;51(4):295-303 [PMID: 15980891]
  7. J Microbiol Methods. 2012 Jan;88(1):155-61 [PMID: 22108496]
  8. Biosens Bioelectron. 2013 Jul 15;45:174-80 [PMID: 23500360]
  9. Lab Chip. 2016 Feb 7;16(3):611-21 [PMID: 26759062]
  10. J Water Health. 2005 Dec;3(4):381-92 [PMID: 16459844]
  11. Appl Environ Microbiol. 2009 Apr;75(8):2393-9 [PMID: 19218410]
  12. Lab Chip. 2013 Aug 21;13(16):3192-8 [PMID: 23807196]
  13. Water Res. 2001 Aug;35(11):2779-83 [PMID: 11456179]
  14. Chem Rev. 2013 Apr 10;113(4):2550-83 [PMID: 23410114]
  15. Biosens Bioelectron. 2014 Oct 15;60:8-21 [PMID: 24768759]
  16. Front Public Health. 2014 Jul 31;2:103 [PMID: 25133139]
  17. Appl Environ Microbiol. 2001 Mar;67(3):1123-7 [PMID: 11229901]
  18. Biosens Bioelectron. 2015 Feb 15;64:171-6 [PMID: 25216452]
  19. Can J Microbiol. 2002 Jun;48(6):542-9 [PMID: 12166681]
  20. J Appl Microbiol. 2012 Aug;113(2):351-60 [PMID: 22607480]
  21. Biosens Bioelectron. 2014 Apr 15;54:262-5 [PMID: 24287414]
  22. Electrophoresis. 2015 Jan;36(2):298-304 [PMID: 25348197]
  23. Anal Chim Acta. 2015 Feb 25;861:62-8 [PMID: 25702275]
  24. J Microbiol Methods. 2008 May;73(2):92-9 [PMID: 18395278]
  25. Crit Rev Microbiol. 2004;30(1):7-24 [PMID: 15116760]
  26. Appl Environ Microbiol. 2002 Apr;68(4):2066-70 [PMID: 11916735]
  27. Biotechnol Adv. 2010 Mar-Apr;28(2):232-54 [PMID: 20006978]
  28. Epidemiol Infect. 2015 Oct;143(13):2795-804 [PMID: 25633631]
  29. Water Res. 2014 May 15;55:256-71 [PMID: 24631875]
  30. J Microbiol Biotechnol. 2014 Mar 28;24(3):297-312 [PMID: 24375418]
  31. Appl Environ Microbiol. 2003 Jul;69(7):4098-102 [PMID: 12839786]
  32. Appl Environ Microbiol. 2009 Jun;75(11):3593-7 [PMID: 19363065]
  33. Food Environ Virol. 2012 Jun;4(2):41-67 [PMID: 23412811]
  34. Appl Environ Microbiol. 2005 Nov;71(11):6878-84 [PMID: 16269722]
  35. Biosens Bioelectron. 2003 May;18(5-6):841-6 [PMID: 12706600]
  36. Appl Environ Microbiol. 2002 Jun;68(6):3169-71 [PMID: 12039787]
  37. Sensors (Basel). 2011;11(3):2728-39 [PMID: 22163763]
  38. Appl Environ Microbiol. 2000 Aug;66(8):3628-31 [PMID: 10919831]
  39. Appl Environ Microbiol. 2004 Mar;70(3):1855-7 [PMID: 15006817]
  40. Appl Environ Microbiol. 2008 May;74(10):2990-6 [PMID: 18359827]
  41. Water Res. 2017 May 1;114:14-22 [PMID: 28214721]
  42. Can J Microbiol. 2001 Nov;47(11):1033-41 [PMID: 11766052]
  43. J Virol Methods. 2009 Jun;158(1-2):104-9 [PMID: 19428577]

Grants

  1. RGPIN/262023-2013/Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada (NSERC Canadian Network for Research and Innovation in Machining Technology)

MeSH Term

Biosensing Techniques
Escherichia coli
Membranes, Artificial

Chemicals

Membranes, Artificial

Word Cloud

Created with Highcharts 10.0.0bacterialconcentrationdetectionpre-enrichmentrapidpracticalautomatedhighrecoverylowsamplevolumewaterlessCFU/mLlimitsystemOnebiggestchallengespre-concentrationaimsincreasebacteriareduceeasylarge-volumesamplespathogenic1testedrapidlyreportedbiosensorseitherinsufficientlimitedcapabilityhandlingsufficientlylargeThereforehigh-performanceprocessstronglydemandedpaperperformanceABCRSbasedcombinationceramicmembranetangentialflowfiltrationtechniquepresentedshortprocessingtimeone hour≤0005ratio≥ 500efficiency~ 90%smallfinalretentate≤ 5 mLrequiredEscherichiacoli

Similar Articles

Cited By