Prediction of Hemodialysis Timing Based on LVW Feature Selection and Ensemble Learning.

Chang-Zhu Xiong, Minglian Su, Zitao Jiang, Wei Jiang
Author Information
  1. Chang-Zhu Xiong: Department of electronic information, Sichuan University, Chengdu, China. gongfuxiong93@gmail.com. ORCID
  2. Minglian Su: West China School of clinical medicine, Sichuan University, Chengdu, China.
  3. Zitao Jiang: Department of electronic information, Sichuan University, Chengdu, China.
  4. Wei Jiang: Department of electronic information, Sichuan University, Chengdu, China.

Abstract

We propose an improved model based on LVW embedded model feature extractor and ensemble learning for improving prediction accuracy of hemodialysis timing in this paper. Due to this drawback caused by feature extraction models, we adopt an enhanced LVW embedded model to search the feature subset by stochastic strategy, which can find the best feature combination that are most beneficial to learner performance. In the model application, we present an improved integrated learners for model fusion to reduce errors caused by overfitting problem of the single classifier. We run several state-of-the-art Q&A methods as contrastive experiments. The experimental results show that the ensemble learning model based on LVW has better generalization ability (97.04%) and lower standard error (± 0.04). We adopt the model to make high-precision predictions of hemodialysis timing, and the experimental results have shown that our framework significantly outperforms several strong baselines. Our model provides strong clinical decision support for physician diagnosis and has important clinical implications.

Keywords

References

  1. Glob J Health Sci. 2015 Jan 26;7(4):392-8 [PMID: 25946945]
  2. J Med Syst. 2015 Oct;39(10):131 [PMID: 26310948]
  3. Artif Organs. 2016 Nov;40(11):1078-1085 [PMID: 27110947]
  4. Methods. 2016 Dec 1;111:21-31 [PMID: 27592382]
  5. Diabetes Res Clin Pract. 2017 Jan;123:49-54 [PMID: 27923172]
  6. PLoS One. 2016 Dec 21;11(12):e0166898 [PMID: 28002450]
  7. Semin Dial. 2017 Mar;30(2):93-98 [PMID: 28092113]
  8. Clin Pharmacol Ther. 2017 May;101(5):585-586 [PMID: 28182259]
  9. J Med Syst. 2017 Apr;41(4):55 [PMID: 28243816]
  10. Pediatr Nephrol. 2017 Sep;32(9):1595-1602 [PMID: 28396941]
  11. Semin Nephrol. 2017 Mar;37(2):181-193 [PMID: 28410652]
  12. Med Sci Sports Exerc. 2017 Sep;49(9):1965-1973 [PMID: 28419025]
  13. Front Neuroinform. 2017 Jun 23;11:41 [PMID: 28690513]
  14. Am J Nephrol. 2017;46(4):288-297 [PMID: 29041011]
  15. Clin Nutr. 2017 Dec 21;:null [PMID: 29295748]
  16. J Clin Exp Dent. 2017 Nov 1;9(11):e1340-e1345 [PMID: 29302287]
  17. J Med Syst. 2018 Feb 19;42(4):59 [PMID: 29460090]
  18. Int J Med Inform. 2018 Apr;112:114-122 [PMID: 29500008]
  19. J Med Syst. 2018 Mar 16;42(5):78 [PMID: 29546648]
  20. J Med Syst. 2018 Apr 3;42(5):88 [PMID: 29610979]
  21. J Med Syst. 2018 Jun 28;42(8):141 [PMID: 29956058]
  22. J Med Syst. 2018 Jun 29;42(8):146 [PMID: 29959539]

Grants

  1. 2016GZ0092/Science and Technology Plan Project of Sichuan Province

MeSH Term

Algorithms
Decision Support Systems, Clinical
Humans
Machine Learning
Renal Dialysis
Time Factors

Word Cloud

Created with Highcharts 10.0.0modelLVWfeaturelearningtimingimprovedbasedembeddedensemblehemodialysiscausedadoptfusionseveralexperimentalresultsstrongclinicalPredictionHemodialysisFeatureEnsembleproposeextractorimprovingpredictionaccuracypaperDuedrawbackextractionmodelsenhancedsearchsubsetstochasticstrategycanfindbestcombinationbeneficiallearnerperformanceapplicationpresentintegratedlearnersreduceerrorsoverfittingproblemsingleclassifierrunstate-of-the-artQ&Amethodscontrastiveexperimentsshowbettergeneralizationability9704%lowerstandarderror± 004makehigh-precisionpredictionsshownframeworksignificantlyoutperformsbaselinesprovidesdecisionsupportphysiciandiagnosisimportantimplicationsTimingBasedSelectionLearningselectionModel

Similar Articles

Cited By (4)